OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 18 — Sep. 15, 2012
  • pp: 3017–3025

Polarization Matching in AlGaN-Based Multiple-Quantum-Well Deep Ultraviolet Laser Diodes on AlN Substrates Using Quaternary AlInGaN Barriers

Md. Mahbub Satter, Zachary Lochner, Jae-Hyun Ryou, Shyh-Chiang Shen, Russell D. Dupuis, and Paul Douglas Yoder

Journal of Lightwave Technology, Vol. 30, Issue 18, pp. 3017-3025 (2012)


View Full Text Article

Acrobat PDF (932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A prototypical design of AlGaN deep ultraviolet (DUV) laser diodes (LDs) on AlN substrates employing tapered electron blocking layer is presented. Two-dimensional optoelectronic simulation predicts lasing at a target wavelength of 250 nm. Degradation of optical gain associated with spatial separation of electron and hole wave functions inside the active region may be considerably reduced in designs featuring quaternary AlInGaN barriers, by virtue of polarization charge matching. A systematic method for selection of polarization-free quaternary barrier compositions is proposed for 250 nm DUV LD designs, accompanied by a sensitivity analysis. The selection procedure presented here is readily applied to LDs and light-emitting diodes operating at other wavelengths.

© 2012 IEEE

Citation
Md. Mahbub Satter, Zachary Lochner, Jae-Hyun Ryou, Shyh-Chiang Shen, Russell D. Dupuis, and Paul Douglas Yoder, "Polarization Matching in AlGaN-Based Multiple-Quantum-Well Deep Ultraviolet Laser Diodes on AlN Substrates Using Quaternary AlInGaN Barriers," J. Lightwave Technol. 30, 3017-3025 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-18-3017


Sort:  Year  |  Journal  |  Reset

References

  1. J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, D. Sickenberger, "Overview of the TAC-BIO detector," Proc. SPIE 7116 pp. 71160D-1-71160D-11 (2008).
  2. G. Knight, "Water and air treatment using ultraviolet light sources," Conf. Lasers Electro-Opt. BaltimoreMD (2011).
  3. P. H. Hart, S. Gorman, J. J. Finlay-Jones, "Modulation of the immune system by UV radiation: More than just the effects of vitamin D?," Nature Rev. Immunol. 11, 584-596 (2011).
  4. S. Abe, S. Sato, E. Ito, M. Tsukuda, M. Tomiyama, E. Ohno, "Master recording for high-density disk using 248 nm laser beam recorder," Jpn. J. Appl. Phys. 41, 1704-1708 (2002).
  5. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, Z. Xu, "Turbulence modeling for non-line-of-sight ultraviolet scattering channels," Proc. SPIE (2011) pp. 80380J-1-80380J-8.
  6. W. C. Xu, Y. Yang, J. Y. Sun, "Study on preparation and properties of fluorescent offset printing ink," Adv. Mater. Res. 174, 393-396 (2010).
  7. Z. W. J. Du, W. He, Y. Tang, "Numerical analysis of impact of imprinting pressure on profile shape and mold deformation in UV-NIL," Proc. IEEE Int. Conf. Nano/Micro Engineered Molecular Syst. (2011) pp. 792-795.
  8. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, "231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire," Appl. Phys. Lett. 91, 071901-1-071901-3 (2007).
  9. W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, R. Gaska, "Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power," Appl. Phys. Lett. 96, 061102-1-061102-3 (2010).
  10. V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, M. A. Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
  11. H. Yoshida, Y. Yamashita, M. Kuwabara, H. Kan, "Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode," Appl. Phys. Lett. 93, 241106-1-241106-3 (2008).
  12. H. Hirayama, T. Yatabe, N. Noguchi, N. Kamata, "Development of 230–270 nm AlGaN-based deep-UV LEDs," Electron. Commun. Jpn. 93, 24-33 (2010).
  13. U. Schwarz, "Ultraviolet laser diodes-indium-free success," Nature Photon. 2, 521-522 (2008).
  14. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, S. J. Pearton, "Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition," J. Appl. Phys. 106, 073706-1-073706-6 (2009).
  15. M. L. Nakarmi, N. Nepal, J. Y. Lin, H. X. Jiang, "Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys," Appl. Phys. Lett. 94, 091903-1-091903-3 (2009).
  16. M. Imura, N. Kato, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, A. Bandoh, "Mg-doped high-quality AlxGa1-xN (x = 0 - 1) grown by high-temperature metal-organic vapor phase epitaxy," Phys. Status Solidi (c) 4, 2502-2505 (2007).
  17. Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, "Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer," Opt. Commun. 282, 4252-4255 (2009).
  18. J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, R. D. Dupuis, "Control of quantum-confined stark effect in InGaN-based quantum wells," IEEE J. Sel. Topics Quantum Electron. 15, 1080-1091 (2009).
  19. M. M. Satter, H.-J. Kim, Z. Lochner, J.-H. Ryou, S.-C. Shen, R. D. Dupuis, P. D. Yoder, "Design and analysis of 250-nm AlInN laser diodes on AlN substrates using tapered electron blocking layers," IEEE J. Quantum Electron. 48, 703-711 (2012).
  20. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 231123-1-231123-3 (2009).
  21. J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, "Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures," Science 327, 60-64 (2010).
  22. J. Liu, Y. Zhang, Z. Lochner, S.-S. Kim, H. Kim, J.-H. Ryou, S.-C. Shen, P. D. Yoder, R. D. Dupuis, Q. Y. Wei, K. W. Sun, A. M. Fischer, F. A. Ponce, "Performance characteristics of InAlGaN laser diodes depending on electron blocking layer and waveguiding layer design grown by metalorganic chemical vapor deposition," J. Cryst. Growth 315, 272-277 (2011).
  23. Y. Zhang, T.-T. Kao, J. Liu, Z. Lochner, S.-S. Kim, J.-H. Ryou, R. D. Dupuis, S.-C. Shen, "Effects of a step-graded AlxGa1-xN electron blocking layer in InGaN-based laser diodes," J. Appl. Phys. 109, 083115-1-083115-5 (2011).
  24. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Appl. Phys. Lett. 97, 261103-1-261103-3 (2010).
  25. A. Venkatachalam, P. D. Yoder, B. Klein, A. Kulkarni, "Nitride band-structure model in a quantum well laser simulator," Opt. Quantum Electron. 40, 295-299 (2008).
  26. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, Y. Kawakami, "Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well," J. Appl. Phys. 107, 114303-1-114303-6 (2010).
  27. L. Liu, L. Wang, D. Li, N. Liu, L. Li, W. Cao, W. Yang, C. Wan, W. Chen, W. Du, X. Hu, Z. C. Feng, "Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures," J. Appl. Phys. 109, 073106-1-073106-5 (2011).
  28. C.-F. Lin, J.-H. Zheng, Z.-J. Yang, J.-J. Dai, D.-Y. Lin, C.-Y. Chang, Z.-X. Lai, C. S. Hong, "High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure," Appl. Phys. Lett. 88, 083121-1-083121-3 (2006).
  29. P.-Y. Dang, Y.-R. Wu, "Optical polarization anisotropy of tensile strained InGaN/AlInN quantum wells for TM mode lasers," J. Appl. Phys. 108, 083108-1-083108-4 (2010).
  30. M. A. Caro, S. Schulz, S. B. Healy, E. P. O'Reilly, "Built-in field control in alloyed c-plane III-N quantum dots and wells," J. Appl. Phys. 109, 084110-1-084110-10 (2011).
  31. R. G. Banal, M. Funato, Y. Kawakami, "Optical anisotropy in [0001]-oriented AlxGa1-xN/AlN quantum wells (x > 0.69)," Phys. Rev. B 79, 121308-1-121308-4 (2009).
  32. J. Shakya, K. Knabe, K. H. Kim, J. Li, J. Y. Lin, H. X. Jiang, "Polarization of III-nitride blue and ultraviolet light-emitting diodes," Appl. Phys. Lett. 86, 091107-1-091107-3 (2005).
  33. G. Franssen, T. Suski, P. Perlin, R. Bohdan, A. Bercha, W. Trzeciakowski, I. Makarowa, R. Czernecki, M. Leszczy?ski, I. Grzegory, "Screening of polarization induced electric fields in blue/violet InGaN/GaN laser diodes by Si doping in quantum barriers revealed by hydrostatic pressure," Phys. Status Solidi (c) 3, 2303-2306 (2006).
  34. H.-H. Huang, Y.-R. Wu, "Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes," J. Appl. Phys. 106, 023106-1-023106-6 (2009).
  35. A. A. Yamaguchi, "Theoretical investigation on polarization control of semipolar-oriented InGaN quantum-well emission using (Al)InGaN alloy substrates," Appl. Phys. Lett. 94, 201104-1-201104-3 (2009).
  36. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Exp. 19, A991-A1007 (2011).
  37. J. Park, Y. Kawakami, "Photoluminescence property of InGaN single quantum well with embedded AlGaN $\delta$ layer," Appl. Phys. Lett. 88, 202107-1-202107-3 (2006).
  38. H. Zhao, G. Liu, N. Tansu, "Analysis of InGaN-delta-InN quantum wells for light-emitting diodes," Appl. Phys. Lett. 97, 131114-1-131114-3 (2010).
  39. H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile," Appl. Phys. Lett. 95, 061104-1-061104-3 (2009).
  40. Z. Yang, R. Li, Q. Wei, T. Yu, Y. Zhang, W. Chen, X. Hu, "Analysis of optical gain property in the InGaN/GaN triangular shaped quantum well under the piezoelectric field," Appl. Phys. Lett. 94, 061120-1-061120-3 (2009).
  41. W. Lee, M.-H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim, E. F. Schubert, "Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes," J. Appl. Phys. 107, 063102-1-063102-6 (2010).
  42. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, Y. Park, "Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes," Appl. Phys. Lett. 94, 011113-1-011113-3 (2009).
  43. A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, P. D. Yoder, "Design strategies for InGaN-based Green lasers," IEEE J. Quantum Electron. 46, 238-245 (2010).
  44. P. J. Parbrook, T. Wang, "Light emitting and laser diodes in the ultraviolet," IEEE J. Sel. Topics Quantum Electron. 17, 1402-1411 (2011).
  45. A. Knauer, H. Wenzel, T. Kolbe, S. Einfeldt, M. Weyers, M. Kneissl, G. Tränkle, "Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes," Appl. Phys. Lett. 92, 191912-1-191912-3 (2008).
  46. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, Y. Park, "Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop," Appl. Phys. Lett. 93, 041102-1-041102-3 (2008).
  47. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507-1-183507-3 (2007).
  48. J. Piprek, Nitride Semiconductor Devices: Principles and Simulation (Wiley-VCH, 2007).
  49. M. M. Satter, P. D. Yoder, "Lateral carrier confinement and threshold current reduction in InGaN QW lasers with deeply etched mesa," Opt. Quantum Electron. 42, 747-754 (2011).
  50. M. E. Levinshtein, S. L. Rumyantsev, M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, 2001).
  51. T. Mori, K. Nagamatsu, K. Nonaka, K. Takeda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, "Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters," Phys. Status Solidi (c) 6, 2621-2625 (2009).
  52. S.-N. Lee, J. Son, T. Sakong, W. Lee, H. Paek, E. Yoon, J. Kim, Y.-H. Cho, O. Nam, Y. Park, "Investigation of optical and electrical properties of Mg-doped p-InxGa1-xN, p-GaN and p-AlyGa1-yN grown by MOCVD," J. Cryst. Growth 272, 455-459 (2004).
  53. K. Kumakura, T. Makimoto, N. Kobayashi, "Activation energy and electrical activity of Mg in Mg-doped InxGa1-xN (x < 0.2)," Jpn. J. Appl. Phys. 39, L337-L339 (2000).
  54. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, H. X. Jiang, "Mg acceptor level in AlN probed by deep ultraviolet photoluminescence," Appl. Phys. Lett. 83, 878-880 (2003).
  55. P. Kozodoy, H. Xing, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, W. C. Mitchel, "Heavy doping effects in Mg-doped GaN," J. Appl. Phys. 87, 1832-1835 (2000).
  56. C. Bayram, J. L. Pau, R. McClintock, M. Razeghi, "Delta-doping optimization for high quality p-type GaN," J. Appl. Phys. 104, 083512-1-083512-5 (2008).
  57. Y. Kamii, I. Waki, H. Fujioka, M. Oshima, H. Miki, M. Okuyama, "Electrical characteristics of Mg-doped GaN activated with Ni catalysts," Appl. Surf. Sci. 190, 348-351 (2002).
  58. R. Y. Korotkov, J. M. Gregie, B. W. Wessels, "Electrical properties of p-type GaN:Mg codoped with oxygen," Appl. Phys. Lett. 78, 222-224 (2001).
  59. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, H. X. Jiang, "Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping," Appl. Phys. Lett. 82, 3041-3043 (2003).
  60. E. Trybus, W. A. Doolittle, M. Moseley, W. Henderson, D. Billingsley, G. Namkoong, D. C. Look, "Extremely high hole concentrations in c-plane GaN," Phys. Status Solidi (c) 6, S788-S791 (2009).
  61. W. A. Doolittle, M. Moseley, E. Trybus, "Deeply degenerate p-type GaN grown by metal modulated epitaxy," Int. Semicond. Device Res. Symp. College ParkMD (2009).
  62. G. E. Dialynas, G. Deligeorgis, M. Zervos, N. T. Pelekanos, "Influence of polarization field on the lasing properties of III-nitride quantum wells," Physica E 32, 558-561 (2006).
  63. S. Mogg, J. Piprek, "Optimization of the barrier height in 1.3 μm InGaAsP multiple-quantum-well active regions for high temperature operation," Proc. SPIE (2001) pp. 227-237.
  64. J. Piprek, "Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping," Opt. Quantum Electron. 44, 67-73 (2012).
  65. S. H. Ha, S. L. Ban, J. Zhu, "Intersubband absorption in strained AlGaN/GaN double quantum wells," Physica B: Condens. Matter 406, 3640-3645 (2011).
  66. H. J. Chung, R. J. Choi, M. H. Kim, J. W. Han, Y. M. Park, Y. S. Kim, H. S. Paek, C. S. Sone, Y. J. Park, J. K. Kim, E. F. Schubert, "Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers," Appl. Phys. Lett. 95, 241109-1-241109-3 (2009).
  67. E. Sakalauskas, B. Reuters, L. R. Khoshroo, H. Kalisch, M. Heuken, A. Vescan, M. Röppischer, C. Cobet, G. Gobsch, R. Goldhahn, "Dielectric function and optical properties of quaternary AlInGaN alloys," J. Appl. Phys. 110, 013102-1-013102-9 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited