OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 18 — Sep. 15, 2012
  • pp: 3043–3049

High-Speed Pattern Effect Free Cross-Gain Modulation in QD-VCSOA

Fatemeh Keshavarz and Vahid Ahmadi

Journal of Lightwave Technology, Vol. 30, Issue 18, pp. 3043-3049 (2012)


View Full Text Article

Acrobat PDF (1420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper we study high-speed pattern effect-free cross-gain modulation (XGM) in quantum-dot vertical-cavity semiconductor optical amplifier (QD-VCSOA) with and without considering Auger effect. XGM is examined for the different surface densities of QDs and bias currents. We show that appearance of the pattern effect strongly depends on the bias current and surface density of QDs. Pattern effect is improved at higher injection current or low dot density. However, at higher currents since Auger scattering is stronger it fills the higher state of QD and causes the drop of stimulated emission resulting in lower modulation efficiency.

© 2012 IEEE

Citation
Fatemeh Keshavarz and Vahid Ahmadi, "High-Speed Pattern Effect Free Cross-Gain Modulation in QD-VCSOA," J. Lightwave Technol. 30, 3043-3049 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-18-3043


Sort:  Year  |  Journal  |  Reset

References

  1. M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, D. Syviridis, "Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers," IEEE J. Sel. Topics Quantum Electron. 14, 1180-1187 (2008).
  2. P. Royo, R. Koda, L. A. Coldren, "Rate equations of vertical-cavity semiconductor optical amplifiers," Appl. Phys. Lett. 80, 3057-3059 (2002).
  3. F. Marino, S. Balle, "Experimental study of a broad area vertical-cavity semiconductor optical amplifier," Opt. Commun. 231, 325-330 (2004).
  4. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, M. Sugawara, "Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers," Phys. Stat. Sol. (b). 238, 301-304 (2003).
  5. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, H. Ishikawa, "Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gbs$^{-1}$ and a new scheme of 3R regenerators," Meas. Sci. Technol 13, 1683-1691 (2002).
  6. A. Uskov, J. Mork, B. Tromborg, T. W. Berg, I. Magnusdottir, E. P. OReilly, "On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers," Opt. Commun. 227, 363-369 (2003).
  7. Y. B. Ezra, B. I. Lembrikov, M. Haridim, "Specific features of XGM in QD-SOA," IEEE J. Quantum Electron. (b) 43, 730-737 (2007).
  8. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, "Cross-gain modulation in quantum-dot SOA at 1550 nm," IEEE J. Quantum Electron 46, 1696-1703 (2010).
  9. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H. J. S. Dorren, "Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier," Opt. Exp. 19, B551-B559 (2011).
  10. J. Kim, M. Laemmlin, Ch. Meuer, D. Bimberg, G. Eisenstein, "Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers," IEEE J. Quantum Electron. 45, 240-248 (2009).
  11. Ch. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, D. Bimberg, "High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm," IEEE J. Sel. Topics Quantum Electron. 15, 749-756 (2009).
  12. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, D. Bimberg, "Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers," IEEE J. Sel. Topics Quantum Electron. 6, 544-551 (2000).
  13. M. J. Adams, J. V. Collins, I. D. Henning, "Analysis of semiconductor laser optical amplifiers," Proc. Inst. Electr. Eng. 132, 58-63 (1985).
  14. T. W. Berg, J. Mork, "Quantum dot amplifiers with high output power and low noise," Appl. Phys. Lett. 82, 3083-3085 (2003).
  15. S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, L. A. Coldren, "Design of fabry-perot surface-emitting lasers with a periodic gain structure," IEEE J. Quantum Electron 25, 1513-1524 (1989).
  16. J. Javaloyes, S. Balle, "Influence of thermal effects on cross-gain modulation characteristics in VCSOA," IEEE J. Quantum Electron 43, 65-71 (2007).
  17. F. Marino, L. Furfaro, S. Balle, "Cross gain modulation in broad-area vertical-cavity semiconductor optical amplifier," Appl. Phys. Lett. 86, 151116-151119 (2005).
  18. J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Z. 1. Alferov, D. Bimberg, "InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm," Inst. Electr. Eng. Electron. Lett. 36, 1384-1385 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited