OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 18 — Sep. 15, 2012
  • pp: 3055–3060

Liquid Crystal Devices for the Reconfigurable Generation of Optical Vortices

Jorge Albero, Pascuala Garcia-Martinez, Noureddine Bennis, Eva Oton, Beatriz Cerrolaza, Ignacio Moreno, and Jeffrey A. Davis

Journal of Lightwave Technology, Vol. 30, Issue 18, pp. 3055-3060 (2012)

View Full Text Article

Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present two liquid crystal devices specifically designed to dynamically generate optical vortices. Two different electrode geometrical shapes have been lithographically patterned into vertical-aligned liquid crystal cells. First, we demonstrate a pie-shape structure with 12 slices, which can be adjusted to produce spiral phase plates (SPP) that generate optical vortices. Moreover, the same device can be used to generate a pseudo-radially polarized beam, by simply adding two quarter-wave plates on each side. A second device has been fabricated with spiral shaped electrodes, which result from the combination of a SPP with the phase of a diffractive lens. This device acts as a spiral diffractive lens (SDL), thus avoiding the requirement of any additional physical external lens to provide focusing of the generated optical vortices. In both devices, the phase modulation can be adjusted by means of the voltage applied to the patterned electrodes, in order to change the properties of the generated optical vortex beams. Experimental demonstrations are provided for different wavelengths.

© 2012 Crown

Jorge Albero, Pascuala Garcia-Martinez, Noureddine Bennis, Eva Oton, Beatriz Cerrolaza, Ignacio Moreno, and Jeffrey A. Davis, "Liquid Crystal Devices for the Reconfigurable Generation of Optical Vortices," J. Lightwave Technol. 30, 3055-3060 (2012)

Sort:  Year  |  Journal  |  Reset


  1. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
  2. J. A. Davis, D. E. McNamara, D. M. Cottrell, J. Campos, "Image processing with the radial Hilbert transform: Theory and experiments," Opt. Lett. 25, 99-101 (2000).
  3. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, "Upgrading a microscope with a spiral phase plate," J. Microsc. 230, 134-142 (2008).
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Exp. 12, 5448-5456 (2004).
  5. N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992).
  6. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, G. V. Uspleniev, "The phase rotor filter," J. Mod. Opt. 39, 1147-1154 (1992).
  7. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112, 321-327 (1994).
  8. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, M. J. Padgett, "The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate," Opt. Commun. 127, 183-188 (1996).
  9. W. C. Cheong, W. M. Lee, X. C. Yuan, L. S. Zhang, K. Dholakia, H. Wang, "Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation," Appl. Phys. Lett. 85, 5784-5786 (2004).
  10. M. Reicherter, T. Haist, E. U. Wagemann, H. J. Tiziani, "Optical particle trapping with computer generated holograms written on a liquid crystal display," Opt. Lett. 24, 608-610 (1999).
  11. K. Crabtree, J. A. Davis, I. Moreno, "Optical processing with vortex-producing lenses," Appl. Opt. 43, 1360-1367 (2004).
  12. J. A. Davis, J. B. Chambers, B. A. Slovick, I. Moreno, "Wavelength-dependent diffraction patterns from a liquid crystal display," Appl. Opt. 47, 4375-4380 (2008).
  13. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, T. Tschudi, "Generation of doughnut laser beam by use of a liquid-crystal cell with a conversion efficiency near 100%;," Opt. Lett. 17, 1351-1353 (2002).
  14. Q. Wang, X. M. Sun, P. Shum, "Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates," Appl. Opt. 43, 2292-2297 (2004).
  15. J. P. Torres, "Quantum engineering of light," Opt. Pura Apl. 44, 309-314 (2011).
  16. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Magali, F. Sciarrino, "Spin-to-orbital momentum of light and its classical and quantum applications," J. Opt. 13, 064001 (2011).
  17. G. A. Swartzlander, Jr."Peering into darkness with a vortex spatial filter," Opt. Lett. 26, 497-499 (2001).
  18. S. C. Tidwell, D. H. Ford, W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
  19. M. Stalder, M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
  20. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1539-1554 (2000).
  21. N. Zhang, J. A. Davis, I. Moreno, D. M. Cottrell, X.-C. Yuan, "Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating," Opt. Exp. 18, 25987-25992 (2010).
  22. P. Velásquez, M. M. Sánchez-López, I. Moreno, D. Puerto, F. Mateos, "Interference birefringent filters fabricated with low cost commercial polymers," Amer. J. Phys. 73, 357-361 (2005).
  23. I. Moreno, J. A. Davis, I. Ruiz, D. M. Cottrell, "Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating," Opt. Exp. 18, 7173-7183 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited