OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 19 — Oct. 1, 2012
  • pp: 3126–3132

S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain

Rui Yang, Yong-Sen Yu, Chao Chen, Yang Xue, Xu-Lin Zhang, Jing-Chun Guo, Chuang Wang, Feng Zhu, Bao-Lin Zhang, Qi-Dai Chen, and Hong-Bo Sun

Journal of Lightwave Technology, Vol. 30, Issue 19, pp. 3126-3132 (2012)


View Full Text Article

Acrobat PDF (898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

An S-tapered fiber sensor has been realized on the common single-mode fiber by a fusion splicer. The S fiber taper (SFT) can be considered as a compact fiber Mach-Zehnder interferometer with the total length of hundreds of microns. The spectral characteristics of the SFTs with different structure parameters including axial offsets and taper waist diameters have been studied. Sensing experiments have also been carried out to test their response to refractive index (RI) and axial strain. The SFT with an axial offset of 114 μm and a taper waist diameter of 54.6 μm exhibits the best combination property. Its RI sensitivity reaches as high as 2066 nm/RI unit in the RI range of 1.407–1.421 and the average strain sensitivity is -183.4 pm/με, which is the highest strain sensitivity, to the best of our knowledge, with one or two orders of magnitude larger than the existing fiber strain sensors.

© 2012 IEEE

Citation
Rui Yang, Yong-Sen Yu, Chao Chen, Yang Xue, Xu-Lin Zhang, Jing-Chun Guo, Chuang Wang, Feng Zhu, Bao-Lin Zhang, Qi-Dai Chen, and Hong-Bo Sun, "S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain," J. Lightwave Technol. 30, 3126-3132 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-19-3126


Sort:  Year  |  Journal  |  Reset

References

  1. P. Lu, Q. Chen, "Asymmetrical fiber Mach-Zehnder interferometer for simultaneous measurement of axial strain and temperature," IEEE Photon. J. 2, 942-953 (2010).
  2. P. Lu, L. Men, K. Sooley, Q. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl. Phys. Lett. 94, 131110-1-131110-3 (2009).
  3. Y. Geng, X. Li, X. Tan, Y. Deng, Y. Yu, "High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper," IEEE Sensors J. 11, 2891-2894 (2011).
  4. D. Wu, T. Zhu, K. S. Chiang, M. Deng, "All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures," J. Lightw. Technol. 30, 805-810 (2012).
  5. C. Chen, Y. S. Yu, R. Yang, L. Wang, J. C. Guo, Q. D. Chen, H. B. Sun, "Monitoring thermal effect in femtosecond laser interaction with glass by fiber bragg grating," J. Lightw. Technol. 29, 2126-2130 (2011).
  6. D. M. Hernandez, A. M. Rios, I. T. Gomez, G. S. Delgado, "Compact optical fiber curvature sensor based on concatenating two tapers," Opt. Lett. 36, 4380-4382 (2011).
  7. J. Villatoro, V. P. Minkovich, D. Monzón-Hernández, "Temperature-independent strain sensor made from tapered holey optical fiber," Opt. Lett. 31, 305-307 (2006).
  8. Z. Tian, S. S. H. Yam, "In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor," IEEE Photon. Technol. Lett. 21, 161-163 (2009).
  9. M. Hatta, Y. Semenova, Q. Wu, G. Farrell, "Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme," Appl. Opt. 49, 536-541 (2010).
  10. D. W. Duan, Y. J. Rao, Y. S. Hou, T. Zhu, "Microbubble based fiber-optic fabry-perot interferometer formed by fusion splicing single-mode fibers for strain measurement," Appl. Opt. 51, 1033-1036 (2012).
  11. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, V. Pruneri, "Spheroidal fabry-perot microcavities in optical fibers for high-sensitivity sensing," Opt. Exp. 20, 7112-7118 (2012).
  12. M. S. Yoon, S. Park, Y. G. Han, "Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating," J. Lightw. Technol. 30, 1156-1160 (2012).
  13. H. J. Patrick, A. D. Kersey, F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightw. Technol. 16, 1606-1612 (1998).
  14. X. Shu, L. Zhang, I. Bennion, "Sensitivity characteristics of long-period fiber gratings," J. Lightw. Technol. 20, 255-266 (2002).
  15. J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, H. B. Sun, "Compact long-period fiber gratings with resonance at second-order diffraction," IEEE Photon. Technol. Lett. 24, 1393-1395 (2012).
  16. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive index sensor based on microstructured fiber bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
  17. R. Yang, Y. S. Yu, C. Chen, Q. D. Chen, H. B. Sun, "Rapid fabrication of microhole array structured optical fibers," Opt. Lett. 36, 3879-3881 (2011).
  18. S. M. Lee, M. Y. Jeong, S. S. Saini, "Etched-core fiber bragg grating sensors integrated with microfluidic channels," J. Lightw. Technol. 30, 1025-1031 (2012).
  19. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, L. I. Sotskaya, "Holey fiber tapers with resonance transmission for high-resolution refractive index sensing," Opt. Exp. 13, 7609-7614 (2005).
  20. K. Q. Kieu, M. Mansuripur, "Biconical fiber taper sensors," IEEE Photon. Technol. Lett. 18, 2239-2241 (2006).
  21. Z. Tian, S. S. H. Yam, "In-line single-mode optical fiber interferometric refractive index sensors," J. Lightw. Technol. 27, 2296-2306 (2009).
  22. P. Lu, Q. Chen, "Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications," Opt. Lett. 36, 268-270 (2011).
  23. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, Y. J. Rao, "Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers," Appl. Opt. 50, 1548-1553 (2011).
  24. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, H. Tsai, "High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing," Appl. Opt. 50, 5503-5507 (2011).
  25. Z. Tian, S. S. H. Yam, H. P. Loock, "Refractive index sensor based on an abrupt taper michelson interferometer in a single-mode fiber," Opt. Lett. 33, 1105-1107 (2008).
  26. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, H. B. Sun, "Single S-tapered fiber Mach-Zehnder interferometers," Opt. Lett. 36, 4482-4484 (2011).
  27. L. C. Bobb, P. M. Shankar, H. D. Krumboltz, "Bending effects in biconically tapered single-mode fibers," J. Lightw. Technol. 8, 1084-1090 (1990).
  28. P. M. Shankar, L. C. Bobb, H. D. Krumboltz, "Coupling of modes in bent biconically tapered single-mode fibers," J. Lightw. Technol. 9, 832-837 (1991).
  29. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, "Tapered single-mode fibres and devices Part 1: Adiabaticity criteria," Proc. Inst. Elect. Eng. J. 138, 343-354 (1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited