OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 19 — Oct. 1, 2012
  • pp: 3133–3141

Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

A. R. Criado, C. de Dios, P. Acedo, G. Carpintero, and K. Yvind

Journal of Lightwave Technology, Vol. 30, Issue 19, pp. 3133-3141 (2012)


View Full Text Article

Acrobat PDF (1334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz and 90 GHz are presented and analyzed in terms of electrical linewidth to compare such components for mm-Wave and sub-THz photonic generation. This work offers a systematic comparison of PMLLD devices for OFCG operation and provides reference information of the performance of two different device topologies that can be used for the implementation of photonic integrated sub-THz CW generation.

© 2012 IEEE

Citation
A. R. Criado, C. de Dios, P. Acedo, G. Carpintero, and K. Yvind, "Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation," J. Lightwave Technol. 30, 3133-3141 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-19-3133


Sort:  Year  |  Journal  |  Reset

References

  1. P. H. Siegel, "Terahertz technology," IEEE Trans. Microw. Theory Tech. 50, 910-928 (2002).
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007).
  3. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, M. Koch, "Terahertz imaging: Applications and perspectives," Appl. Opt. 49, E48-E57 (2010).
  4. W. R. Tribe, D. A. Newnham, P. F. Taday, M. C. Kemp, "Hidden object detection: Security applications of terahertz technology," San JoseCA (2004) pp. 168-176.
  5. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microw. Theory Tech. 52, 2438-2447 (2004).
  6. P. F. Taday, "Applications of terahertz spectroscopy to pharmaceutical sciences," Philos. Trans. Royal Soc. London A, Math., Phys. Eng. Sci. 362, 351-364 (2004) 2004.
  7. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kurner, "Short-range ultra-broadband terahertz communications: Concepts and perspectives," IEEE Antennas Propag. Mag. 49, 24-39 (2007).
  8. "A new phase for THz," Electron. Lett. 47, 1255-1255 (2011).
  9. R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Topics Quantum Electron. 17, 245-260 (2011).
  10. R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Topics Quantum Electron. 17, 261-274 (2011).
  11. H. W. Hubers, "Terahertz heterodyne receivers," IEEE J. Sel. Topics Quantum Electron. 14, 378-391 (2008).
  12. T. Nagatsuma, "Generating millimeter and terahertz waves," IEEE Microw. Mag. 10, 64-74 (2009).
  13. M. Feiginov, C. Sydlo, O. Cojocari, P. Meissner, "Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz," Appl. Phys. Lett. 99, (2011) Art. ID 233506.
  14. S. Preu, "Tunable, continuous-wave Terahertz photomixer sources and applications," J. Appl. Phys. 109, 061301 (2011).
  15. A. Masaaki, A. Ryota, S. Hiroshi, K. Ikufumi, I. Tadashi, M. Katsuhiko, I. Hiromasa, "Ultrabroadband THz field detection beyond 170 THz with a photoconductive antenna," Proc. CLEO (2008).
  16. X. Leijtens, "JePPIX: The platform for indium phosphide-based photonics," IET Optoelectron. 5, 202-206 (2011).
  17. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, U. Krishnamachari, "High performance INP-based photonic ICs—A tutorial," J. Lightw. Technol. 29, 554-570 (2011).
  18. S. Ho-Jin, N. Shimizu, T. Furuta, K. Suizu, H. Ito, T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol. 26, 2521-2530 (2008).
  19. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, A. J. Seeds, "Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation," Opt. Exp. 18, 11105-11110 (2010).
  20. S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, E. R. Brown, "Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers," Appl. Phys. Lett. 90, (2007) Art. ID 212115.
  21. P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, S. Hansmann, "Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing," Electron. Lett. 42, 928-929 (2006).
  22. A. R. Criado, P. Acedo, G. Carpintero, C. De Dios, K. Yvind, "Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering," Opt. Exp. 20, 1253-1260 (2012).
  23. E. Rouvalis, M. J. Fice, C. C. Renaud, A. J. Seeds, "Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes," Opt. Exp. 19, 2079-2084 (2011).
  24. S. Pengbo, N. J. Gomes, P. A. Davies, P. G. Huggard, B. N. Ellison, "Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator," J. Lightw. Technol. 25, 3257-3264 (2007).
  25. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, A. L. Gaeta, "Chip-based frequency combs with sub-100 GHz repetition rates," Opt. Lett. 37, 875-877 (2012).
  26. G. Carpintero, M. G. Thompson, R. V. Penty, I. H. White, "Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode," IEEE Photon. Technol. Lett. 21, 389-391 (2009).
  27. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, M. A. Chin, "Multicolor single-wavelength sources generated by a monolithic colliding pulse mode-locked quantum well laser," IEEE Photon. Technol. Lett. 3, 971-973 (1991).
  28. J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Trans. Microw. Theory Tech. 60, 845-860 (2012).
  29. E. Rouvalis, M. J. Fice, C. C. Renaud, A. J. Seeds, "Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes," IEEE Trans. Microw. Theory Tech. 60, 686-691 (2012).
  30. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, "Terahertz frequency metrology based on frequency comb," IEEE J. Sel. Topics Quantum Electron. 17, 191-201 (2011).
  31. D. Eliyahu, R. A. Salvatore, A. Yariv, "Noise characterization of a pulse train generated by actively mode-locked lasers," J. Opt. Soc. Amer. B, Opt. Phys. 13, 1619-1626 (1996).
  32. D. Eliyahu, R. A. Salvatore, A. Yariv, "Effect of noise on the power spectrum of passively mode-locked lasers," J. Opt. Soc. Amer. B, Opt. Phys. 14, 167-174 (1997).
  33. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, J. Hanberg, "High-performance 10 GHz all-active monolithic modelocked semiconductor lasers," Electron. Lett. 40, 735-737 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited