OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 19 — Oct. 1, 2012
  • pp: 3157–3163

Ultranarrow Spectrum-Sliced Incoherent Light Source for 10-Gb/s WDM PON

Zaineb Al-Qazwini and Hoon Kim

Journal of Lightwave Technology, Vol. 30, Issue 19, pp. 3157-3163 (2012)

View Full Text Article

Acrobat PDF (1002 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report on the use of an ultranarrow (~0.01 nm) spectrum-sliced incoherent light source for transmission of 10-Gb/s nonreturn-to-zero signals over 20-km dispersion-uncompensated standard single-mode fiber and 0.2-nm-bandwidth optical band-pass filter. A wideband amplified spontaneous emission is first generated using an erbium-doped fiber amplifier and then spectrum-sliced by an ultranarrow fiber Fabry–Perot filter (3-dB bandwidth: ~0.006 nm). The spectrum-sliced light is intensity-smoothed by using a gain-saturated reflective semiconductor optical amplifier and then modulated at 10.7 or 12.5 Gb/s, assuming forward error correction (FEC) with 7% or 25% overheads, respectively. Thanks to the narrow linewidth of the source, we are able to retain the intensity smoothing after the transmission, achieving uncorrected bit-error ratios better than 10<sup>-3</sup> and 3 x 10<sup>-3</sup> at 10.7 and 12.5 Gb/s, respectively. We discuss the applicability of the proposed light source to wavelength-division-multiplexed passive optical networks and the choice of FEC codes for the proposed scheme.

© 2012 IEEE

Zaineb Al-Qazwini and Hoon Kim, "Ultranarrow Spectrum-Sliced Incoherent Light Source for 10-Gb/s WDM PON," J. Lightwave Technol. 30, 3157-3163 (2012)

Sort:  Year  |  Journal  |  Reset


  1. J. S. Lee, Y. C. Chung, D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multi-channel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
  2. Y. C. Chung, R. W. Tkach, D. J. DiGiovanni, "SBS limitation on a spectrum-sliced fiber-amplifier light source," Proc. Optical Fiber Commun. Conf. (1995).
  3. Y. S. Jang, Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10, 218-220 (1998).
  4. M. Munroe, J. Cooper, M. Raymer, "Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier," IEEE J. Quantum Electron. 34, 548-551 (1998).
  5. A. J. Keating, W. T. Holloway, D. D. Sampson, "Feedforward noise reduction of incoherent light for spectrum-sliced transmission at 2.5 Gb/s," IEEE Photon. Technol. Lett. 7, 1513-1515 (1995).
  6. A. Keating, D. Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications," J. Lightw. Technol. 15, 53-61 (1997).
  7. G. J. Pendock, D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightw. Technol. 14, 2141-2148 (1996).
  8. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems," J. Lightw. Technol. 23, 2399-2409 (2005).
  9. S. Kim, J. Han, J. Lee, C. Park, "Suppression of intensity noise in 10 Gbit/s spectrum-sliced incoherent light channel using gain-saturated semiconductor optical amplifiers," Electron. Lett. 35, 1000-1001 (1999).
  10. S. Kaneko, J. Kani, K. Iwatsuki, A. Ohki, M. Sugo, S. Kamei, "Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction," J. Lightw. Technol. 24, 1295-1301 (2006).
  11. W. Mathlouthi, F. Vacondio, L. Rusch, "High-bit-rate dense SS-WDM PON using SOA-based noise reduction with a novel balanced detection," J. Lightw. Technol. 27, 5045-5055 (2009).
  12. D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, M. K. Park, J. W. Park, Y. K. Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, S. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. Hwang, Y. J. Oh, D. H. Jang, C. S. Shim, "Low-cost WDM-PON with colorless bidirectional transceivers," J. Lightw. Technol. 24, 158-165 (2006).
  13. J. S. Lee, Y. C. Chung, T. H. Wood, J. P. Meester, C. H. Joyner, C. A. Burrus, J. Stone, H. M. Presby, D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source with a polarization-insensitive electroabsorption modulator," IEEE Photon. Technol. Lett. 6, 1035-1037 (1994).
  14. F. Koyama, T. Yamatoya, K. Iga, "Highly gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source," Proc. ICIPRM (2000) pp. 439-442.
  15. U. Koren, B. I. Miller, M. G. Young, M. Chien, G. Raybon, T. Brenner, R. Ben-Michael, K. Dreyer, R. J. Capik, "A polarization insensitive optical amplifier with integrated electroabsorption modulators," Electron. Lett. 32, 111-113 (1996).
  16. H. H. Lee, M. Y. Park, S. H. Cho, J. H. Lee, J. H. Yu, B. W. Kim, "Filtering effects in a spectrum-sliced WDM-PON system using a gain-saturated reflected-SOA," Proc. Optical Fiber. Commun. Conf. (2009).
  17. A. Tychopoulos, O. Koufopavlou, I. Tomkos, "FEC in optical communications," IEEE Circuits Dev. Mag. 22, 79-86 (2006).
  18. http://www.gemfire.com/Main/Products/prodpdfs.html.
  19. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).
  20. H. Kim, S. Kim, S. Hwang, Y. Oh, "Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers," J. Lightw. Technol. 24, 775-785 (2006).
  21. J. S. Lee, Y. C. Chung, C. S. Shim, "Bandwidth optimization of a spectrum-sliced fiber amplifier light source using an angle-tuned Fabry-Perot filter and a double-stage structure," IEEE Photon. Technol. Lett. 6, 1197-1199 (1994).
  22. K. Y. Cho, A. Agata, Y. Takushima, Y. C. Chung, "Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON," IEEE Photon. Technol. Lett. 22, 57-59 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited