OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 20 — Oct. 15, 2012
  • pp: 3281–3287

Silicon Polarization Beam Splitter Based on an Asymmetrical Evanescent Coupling System With Three Optical Waveguides

Daoxin Dai

Journal of Lightwave Technology, Vol. 30, Issue 20, pp. 3281-3287 (2012)

View Full Text Article

Acrobat PDF (1401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A short polarization beam splitter (PBS) is presented based on an asymmetrical evanescent coupling system, which consists of a narrow input waveguide, a narrow output waveguide, and a wide middle optical waveguide between them. The width of the waveguides is designed so that the phase-matching condition is satisfied for the TM fundamental (TM0) mode in the narrow input/output waveguide and the first higher order TM (TM1) mode in the wide middle waveguide. Meanwhile, there is a significant phase mismatch for the case with TE polarization. Therefore, for the launched TE polarized light, almost no coupling happens when it goes through the coupling region and finally the TE polarized light is output from the through port. For the launched TM0 mode in the narrow input waveguide, it is completely coupled to the TM1 mode in the wide middle waveguide by choosing the optimal length of the coupling region. Furthermore, the TM1 mode excited in the wide middle waveguide is then coupled to the TM0 mode in the narrow output waveguide through the evanescent coupling between them. A short (~25μm long) PBS is designed based on silicon-on-insulator nanowires, while the gap width is chosen as large as 300 nm to make the fabrication easy. Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ±20 nm) and a broadband (~50 nm) for an extinction ratio of >15 dB.

© 2012 IEEE

Daoxin Dai, "Silicon Polarization Beam Splitter Based on an Asymmetrical Evanescent Coupling System With Three Optical Waveguides," J. Lightwave Technol. 30, 3281-3287 (2012)

Sort:  Year  |  Journal  |  Reset


  1. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, H. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photon. 1, 57-60 (2007).
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, B. H. O. , "Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application," IEEE Photon. Technol. Lett. 15, 72-74 (2003).
  3. B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B. 73, 613-618 (2001).
  4. A. Katigbak, J. F. Strother, J. Lin, "Compact silicon slot waveguide polarization splitter," Opt. Eng. 48, 080503-1-080503-3 (2009).
  5. B. K. Yang, S. Y. Shin, D. M. Zhang, "Ultrashort polarization splitter using two-mode interference in silicon photonic wires," IEEE Photon. Technol. Lett. 21, 432-434 (2009).
  6. I. Kiyat, A. Aydinli, N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
  7. J. B. Xiao, X. Liu, X. Sun, "Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures," Jpn. J. Appl. Phys. 47, 3748-3754 (2008).
  8. X. G. Tu, S. S. N. Ang, A. B. Chew, J. Teng, T. Mei, "An ultracompact directional coupler based on GaAs cross-slot waveguide," IEEE Photon. Technol. Lett. 22, 1324-1326 (2010).
  9. T. Yamazaki, H. Aono, J. Yamauchi, H. Nakano, "Coupled waveguide polarization splitter with slightly different core widths," J. Lightw. Technol. 26, 3528-3533 (2008).
  10. Y. Yue, L. Zhang, J.-Y. Yang, R. G. Beausoleil, A. E. Willner, "Silicon-on-insulator polarization splitter using two horizontally slotted waveguides," Opt. Lett. 35, 1364-1366 (2010).
  11. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, "Mach–Zehnder interferometer polarization splitter in InGaAsP-InP," IEEE Photon. Technol. Lett. 6, 402-405 (1994).
  12. T. K. Liang, H. K. Tsang, "Integrated PBS in high index contrast silicon-on-insulator waveguides," IEEE Photon. Technol. Lett. 17, 393-395 (2005).
  13. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, M. K. Smit, "A compact integrated polarization splitter/converter in InGaAsP-InP," IEEE Photon. Technol. Lett. 19, 1286-1288 (2007).
  14. D. Dai, Z. Wang, J. E. Bowers, "Considerations for the design of asymmetrical Mach–Zehnder interferometers used as polarization beam splitters on a sub-micron silicon-on-insulator platform," J. Lightw. Technol. 29, 1808-1817 (2011).
  15. Y. Shi, D. Dai, S. He, "Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler," IEEE Photon. Technol. Lett. 19, 825-827 (2007).
  16. X. Ao, L. Liu, W. Lech, S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115-1-171115-3 (2006).
  17. J. Feng, Z. Zhou, "Polarization beam splitter using a binary blazed grating coupler," Opt. Lett. 32, 1662-1664 (2007).
  18. Y. Tang, D. Dai, S. He, "Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits," IEEE Photon. Technol. Lett. 21, 242-244 (2009).
  19. M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, "Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch," J. Lightw. Technol. 12, 625-634 (1994).
  20. F. Ghirardi, J. Brandon, M. Carre, A. Bruno, L. Meniganx, A. Carenco, "Polarization splitter based on modal birefringence in InP/InGaAsP optical waveguides," IEEE Photon. Technol. Lett. 5, 1047-1049 (1993).
  21. D. Dai, Y. Shi, S. He, "Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration," Appl. Opt. 45, 4941-4946 (2006).
  22. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
  23. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Exp. 14, 12401-12408 (2006).
  24. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, M. K. Smit, "A single etch-step fabrication-tolerant polarization splitter," J. Lightw. Technol. 25, 740-746 (2007).
  25. M. Komatsu, K. Saitoh, M. Koshiba, "Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling," Opt. Exp. 17, 19225-19233 (2009).
  26. S. Lin, J. Hu, K. B. Crozier, "Ultracompact, broadband slot waveguide polarization splitter," Appl. Phys. Lett. 98, 151101-1-151101-3 (2011).
  27. D. Dai, Z. Wang, J. E. Bowers, "Ultra-short broad-band polarization beam splitter based on an asymmetrical directional coupler," Opt. Lett. 36, 2590-2592 (2011).
  28. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, "Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits," Opt. Exp. 19, 12646-12651 (2011).
  29. D. Dai, J. Bauters, J. E. Bowers, "Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity, and loss reduction," Light: Sci. Appl. 1, 1-14.
  30. D. Dai, J. E. Bowers, "Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires," Opt. Exp. 19, 10940-10949 (2011).
  31. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Topics Quantum Electron. 16, 316-324 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited