OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 20 — Oct. 15, 2012
  • pp: 3288–3293

Design of Multicavities on Left-Handed Photonic-Crystal-Based Chemical Sensors

F. Ouerghi, F. AbdelMalek, Shyqyri Haxha, E. K. Akowuah, and H. Ademgil

Journal of Lightwave Technology, Vol. 30, Issue 20, pp. 3288-3293 (2012)


View Full Text Article

Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a theoretical study on a novel chemical sensor platform based on a 2-D photonic crystal with negative refraction (PCNR). The proposed device consists of distributed multinanocavities embedded within the PCNR. A 2-D finite-difference time-domain method with perfectly matched layers has been employed to investigate the performance of the sensor for different analytes and structural parameters. The calculations show that it is possible to detect simultaneously two analytes when the refractive index is larger than that of water. The quality factor was determined to be around 105 when the radii of the central nanocavity is r1 = 0.225a and that of the external is r2 = 0.0215a.

© 2012 IEEE

Citation
F. Ouerghi, F. AbdelMalek, Shyqyri Haxha, E. K. Akowuah, and H. Ademgil, "Design of Multicavities on Left-Handed Photonic-Crystal-Based Chemical Sensors," J. Lightwave Technol. 30, 3288-3293 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-20-3288


Sort:  Year  |  Journal  |  Reset

References

  1. R. Narayanaswamy, O. S. Wolfbeis, Optical Sensors (Springer, 2004).
  2. C. Mouvet, R. D. Harris, C. Maciag, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. Abuknesha, G. Ismail, "Determination of simazine in water samples by waveguide surface plasmon resonance," Anal. Chim. Acta 338, 109-117 (1997).
  3. J. Homola, J. Dostálek, S. F. Chen, A. Rasooly, S. Jiang, S. S. Yee, "Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk," Int. J. Food Microbiol. 75, 61-69 (2002).
  4. V. Koubová, E. Brynda, L. Karasová, J. Skvor, J. Homola, J. Dostálek, P. Tobiska, J. Rosický, "Detection of foodborne pathogens using surface plasmon resonance biosensors," Sens. Actuators B 74, 100-105 (2001).
  5. Q. Quan, M. Loncar, "Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities," Opt. Exp. 19, 18529-18542 (2011).
  6. J. L. O'Brien, A. Furusawa, J. Vuckovic, "Photonic quantum technologies," Nat. Photon. 3, 687-695 (2009).
  7. M. A. Cheryl, P. G. Konstantinos, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949 (1996).
  8. M. M. Hawkeye, M. J. Brett, "Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition," Adv. Funct. Mater. 21, 36-52 (2011).
  9. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  10. V. G. Veselago, "The electrodynamic of substances with simultaneously negative values of $\varepsilon$ and μ," Soviet Phys. USPEKI 10, 509-514 (1968).
  11. M. Notomi, "Negative refraction in photonic crystals," Opt. Quantum Electron. 34, 133-143 (2002).
  12. P. V. Parimi, W. T. Lu, P. Vodo, S. Sridhar, "Photonic crystals: Imaging by flat lens using negative refraction," Nature 426, 404 (2005).
  13. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature 423, 604 (2003).
  14. D. Dorfner, T. Hürlimann, T. Zabel, G. Abstreiter, L. H. Frandsen, J. Finley, "Silicon photonic crystal nanostructures for refractive index sensing," Appl. Phys. Lett. 93, 181103 (2008).
  15. R. Mindy, R. Lee, P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Exp. 15, 4530-4535 (2007).
  16. M. Loncar, A. Scherer, Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
  17. S. K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  18. J. P. A. Berenger, "Perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
  19. F. Ouerghi, F. AbdelMalek, S. Haxha, M. Mejatty, H. Bouchriha, V. Haxha, "Light confinement in 3D silicon doped with germanium (n-SixGe1_x) and silicon-on-insulator (SOI) photonic crystal structures," Opt. Commun. 265, 683-691 (2006).
  20. X. Wang, Z. F. Ren, K. Kempa, "Unrestricted superlensing in a triangular two-dimensional photonic crystal," 12, 2919-2924 (2004).
  21. Q. Quan, P. B. Deotare, M. Loncar, "Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide," Appl. Phys. Lett. 96, (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited