OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 23 — Dec. 1, 2012
  • pp: 3586–3596

Band-Pass Non-TEM Mode Traveling-Wave Electro-Optical Polymer Modulator for Millimeter-Wave and Terahertz Application

Faezeh Fesharaki and Ke Wu

Journal of Lightwave Technology, Vol. 30, Issue 23, pp. 3586-3596 (2012)

View Full Text Article

Acrobat PDF (2026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


High-frequency electro-optical modulator is critical for enabling signal processing and distribution in the next generation cloud-computing, tele-medicine, and telecommunications. In this paper, substrate integrated waveguide (SIW) is exploited as an alternative fundamental transmission line structure in support of electrical signal for the design and development of millimeter-wave and terahertz (THz) traveling-wave polymeric electro-optic (EO) modulator. Optical and full-wave electromagnetic analyses are carried out and structure optimization is made on the basis of such analyses in order to obtain millimeter-wave transmission characteristics and optical response. Compared to its conventional TEM-mode transmission lines, this bandpass non-TEM mode SIW-based EO modulator presents numerous advantages, namely compact structure, low transmission loss, low driving power, simple packaging and flat optical response over a wide frequency range.

© 2012 IEEE

Faezeh Fesharaki and Ke Wu, "Band-Pass Non-TEM Mode Traveling-Wave Electro-Optical Polymer Modulator for Millimeter-Wave and Terahertz Application," J. Lightwave Technol. 30, 3586-3596 (2012)

Sort:  Year  |  Journal  |  Reset


  1. K. Igarashi, K. Kikuchi, "Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems," IEEE J. Sel. Topics Quantum Electron. 14, 551-565 (2008).
  2. R. W. McGowan, G. Gallot, D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431 (1999).
  3. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Exp. 11, 2549 (2003).
  4. H. Han, H. Park, M. Cho, J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634 (2002).
  5. K. Wang, D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-9 (2004).
  6. J. Federici, L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Phys. 107, 111101–1-111101–22 (2010).
  7. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kurner, "Short-range ultra-broadband terahertz communications: Concepts and perspectives," IEEE Antennas Propag. Mag. 49, 24-39 (2007).
  8. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).
  9. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," J. Science 298, 1401-1403 (2002).
  10. L. R. Dalton, P. A. Sullivan, D. H. Bale, "Electric field poled organic electro-optic materials: State of the art and future prospects," J. Chem. Rev. 110, 25-55 (2009).
  11. S. E. Thompson, S. Parthasarathy, "Moore's law: The future of Si microelectronics," J. Nanotechnology 9, 20-25 (2006).
  12. G. Gallot, S. P. Jamison, R. W. Mcgowan, D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Amer. B: Opt. Phys. 17, 851-863 (2000).
  13. R. Mendis, D. M. Mittleman, "Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications," Opt. Exp. 17, 14839-50 (2009).
  14. R. Mendis, D. M. Mittleman, "An investrigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation," J. Opt. Soc. Amer. B, Opt. Phys. 26, A6-A13 (2009).
  15. K. Wu, D. Deslandes, Y. Cassivi, "The substrate integrated circuits—A new concept for high-frequency electronics and optoeletronics," Proc. 6th Int. Conf. Telecommunications Modern Satellite, Cable, Broadcasting Service (2003) pp. P–III-P–X.
  16. K. Wu, "Towards the development of terahertz substrate integrated circuit technology," IEEE SiRF (2009).
  17. K. Wu, D. Deslandes, Y. Cassivi, "The substrate integrated circuits—A new concept for high-frequency electronics and optoelectronics," 6th Int. Telecommun. Modern Satellite, Cable, Broadcast. Service. Conf. (2003) pp. P–III-P–X.
  18. K. Wu, E. Mortazy, M. Bozzi, "Development of microwave and millimeter-wave traveling-wave electro-optical devices using substrate integrated circuit concept," Proc. Microw. Photon. 62-65 (2007).
  19. W. Wang, Y. Shi, D. J. Olson, W. Lin, J. Bechtel, "Push-pull poled polymer Mach-Zehnder modulators with a single microstrip line electrode," IEEE Photon. Technol. Lett. 11, 51-53 (1999).
  20. C. H. Cox, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microw. Theory Tech. 54, 906-919 (2006).
  21. S. Tang, L. Sun, R. T. Chen, "Highly efficient linear waveguide modulator based on domain-inverted electro-optic polymers," Opt. Eng. 39, 680-688 (2000).
  22. P. L. Liu, B. J. Li, Y. S. Trisno, "In search of a linear electrooptic amplitude modulator," IEEE Photon. Tech. Lett. 3, 144-146 (1991).
  23. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, A. Scherer, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, 163303 (2008).
  24. R. Heidemann, "Optical generation of very narrow linewidth millimetre wave signals," Electronics Lett. 28, 3-5 (1992).
  25. T. Sakamoto, T. Kawanishi, M. Izutsu, "Optoelectronic oscillator using push-pull Mach-Zehnder modulator biased at point for optical two-tone signal generation," Proc. Conf. Lasers Electro-Opt., CLEO (2005) pp. 877-879.
  26. T. Tokle, C. Peucheret, P. Jeppesen, "Advanced modulation formats in 40 Gbit/s optical communication systems with 80 km fibre spans," Opt. Commun. 225, 79-87 (2003).
  27. T. Sakamoto, A. Chiba, T. Kawanishi, "Electro-optic synthesis of 8PSK by quad-parallel Mach-Zehnder modulator," Proc. OFC/NFOEC (2009).
  28. H. Zhang, M. C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, H. R. Fetterman, "Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm," Appl. Phys. Lett. 78, 3136 (2001).
  29. B. M. A. Rahman, V. Haxha, S. Haxha, K. T. V. Grattan, "Design optimization of polymer electro-optic modulators," J. Lightw. Technol. 24, 3506-3513 (2006).
  30. R. A. Soref, J. Schmidtchen, K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
  31. M. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. Steier, H. Fetterman, L. Dalton, "Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore," IEEE J. Sel. Topics Quantum Electron. 7, 826-835 (2001).
  32. U. Fisher, T. Zinke, J. R. Kropp, F. Arndt, K. Petterman, "0.1 dB/cm waveguide losses in single-mode SOI rib waveguides," IEEE Photon. Technol. Lett. 8, 647-648 (1996).
  33. B. Li, R. Dinu, D. Jin, D. Huang, B. Chen, A. Barklund, E. Miller, M. Moolayil, G. Yu, Y. Fang, L. Zheng, H. Chen, J. Vemagiri, "Recent advances in commercial electro-optic polymer modulator," Proc. OFC (2007) pp. 115.
  34. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  35. W. S. C. Chang, Fundamentals of Guided-Wave Optoelectronic Devices (Cambridge University Press, 2010).
  36. S. Member, "Overlap integral factors in integrated optic modulators and switches," J. Lightw. Technol. 7, 1063-1070 (1989).
  37. R. A. Becker, "Traveling-wave electro-optic modulator with maximum bandwidth-length product," Appl. Phys. Lett. 45, 1168-1170 (1984).
  38. K. Kubota, J. Noda, O. Mikami, "Traveling wave optical modulator using a directional coupler LiNbO3waveguide," IEEE J. Quantum Electron. 16, 754-760 (1980).
  39. H. Chung, W. S. C. Chang, E. L. Adler, "Modeling and optimization of traveling-wave LiNbo3 interferometric modulators," IEEE J. Sel. Topics Quantum Electron. 27, (1991).
  40. D. M. Pozar, Microwave Engineering (Addison-Wesley, 1990).
  41. T. Hiraoka, T. Tokumitsu, M. Aikawa, "Very small wide-band MMIC magic T's using microstrip lines on a thin dielectric film," IEEE Trans. Microw. Theory Tech. MTT-37, 1569-1575 (1989).
  42. A. Chowdhury, L. McCaughan, "Figure of merit for near-velocity-matched traveling-wave modulators," Opt. Lett. 26, 1317-9 (2001).
  43. G. E. Ponchak, S. Member, A. N. Downey, "Characterization of thin film microstrip lines on polyimide," IEEE Trans. Compon., Packag., Manufac. Tech. 21, 171-176 (1998).
  44. M. Konno, "Conductor loss in thin-film transmission lines," Electron. Commun. Japan 82, 83-91 (1999) pt. 2.
  45. D. Stephens, P. R. Young, S. Member, I. D. Robertson, S. Member, "Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology," IEEE Trans. Microw. Theory Tech. 53, 3832-3838 (2005).
  46. (2009) OptiBPM by OPTIWAVE©, ver. 10.0, single license.
  47. D. M. Gill, A. Chowdhury, "Electro-optic polymer-based modulator design and performance for 40 Gb/s system applications," J. Lightw. Technol. 20, 2145-2153 (2002).
  48. D. M. Gill, D. Jacobson, R. Wolfe, Electro-Optic Modulators U.S. Patent 6 172 791 (2001).
  49. S. V. Burke, "The spectral index method for semiconductor rib and ridge waveguides," J. Progr. Electromagn. Res. 10, 41-74 (1995).
  50. R. G. Hunsperger, Integrated Opt.: Theory and Technology (Springer-Verlag New York, 2009).
  51. Y. Zhou, M. Izutsu, S. Member, T. Sueta, "Low-drive-power asymmetric Mach-Zehnder modulator with band-limited operation," J. Lightw. Technol. 9, 1-4 (1991).
  52. W. S. C. Chang, RF Photonic Technol. in Optical Fiber Links (Cambridge Univ. Press, 2002).
  53. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett 70, 3335-3337 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited