OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 23 — Dec. 1, 2012
  • pp: 3603–3609

Exact Model for Mode-Dependent Gains and Losses in Multimode Fiber

Keang-Po Ho

Journal of Lightwave Technology, Vol. 30, Issue 23, pp. 3603-3609 (2012)


View Full Text Article

Acrobat PDF (1594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In the strong mode-coupling regime, the model for mode-dependent gains and losses (collectively referred as MDL) of a multimode fiber is extended to the region with large MDL. The MDL is found to have the same statistical properties as the eigenvalues of the sum of two matrices. The first matrix is a random Gaussian matrix with its standard deviation proportional to the accumulated MDL. The other matrix is a deterministic matrix with uniform eigenvalues proportional to the square of the accumulated MDL. The results are analytically correct for fibers with two or very large number of modes, and also numerically verified for multimode fibers with other number of modes.

© 2012 IEEE

Citation
Keang-Po Ho, "Exact Model for Mode-Dependent Gains and Losses in Multimode Fiber," J. Lightwave Technol. 30, 3603-3609 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-23-3603


Sort:  Year  |  Journal  |  Reset

References

  1. P. K. Pepeljugoski, D. M. Kuchta, "Design of optical communications data links," IBM J. Res. Dev. 47, 223-237 (2003).
  2. Y. Koike, S. Takahashi, Optical Fiber Telecommunications VB: Systems and Networks (Elsevier-Academic, 2008).
  3. H. R. Stuart, "Dispersive multiplexing in multimode optical fiber," Science 289, 281-283 (2000).
  4. A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, B. Jalali, "Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links," IEEE Commun. Mag. 45, 57-63 (2007).
  5. A. Al Amni, A. Li, S. Chen, X. Chen, G. Gao, W. Shieh, "Dual-LP$_{{11}}$ mode 4$\,\times\,$4 MIMO-OFDM transmission over a two-mode fiber," Opt. Exp. 19, 16672-16678 (2011).
  6. F. Yaman, N. Bai, B. Zhu, T. Wang, G. Li, "Long distance transmission in few-mode fibers," Opt. Exp. 18, 13250-13257 (2010).
  7. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Margoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, G. Charlet, "Two mode transmission at 2$\,\times\,$100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer," Opt. Exp. 19, 16593-16600 (2011).
  8. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1780 (1972).
  9. R. Olshansky, "Mode-coupling effects in graded-index optical fibers," App. Opt. 14, 935-945 (1975).
  10. K.-P. Ho, J. M. Kahn, "Statistics of group delays in multimode fiber with strong mode coupling," J. Lightw. Technol. 29, 3119-3128 (2011).
  11. K.-P. Ho, J. M. Kahn, "Mode-dependent loss and gain: Statistics and effect on mode-division multiplexing," Opt. Exp. 19, 16612-16635 (2011).
  12. P. J. Winzer, G. J. Foschini, "MIMO capacities and outage probabilities in spatially multiplexed optical transport systems," Opt. Exp. 19, 16680-16696 (2011).
  13. D. Voiculescu, K. Dykema, A. Nica, Free Random Variables (AMS, 1992).
  14. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability (Cambridge Univ. Press, 2006).
  15. K.-P. Ho, J. M. Kahn, "Frequency diversity in mode-division multiplexing systems," J. Lightw. Technol. 19, 3719-3726 (2011).
  16. S. Ö. Arik, D. Askarov, J. M. Kahn, "Effect of mode coupling on signal processing complexity in mode-division multiplexing," J. Lightw. Technol. submitted for publication.
  17. S. Berdagué, P. Facq, "Mode division multiplexing in optical fibers," Appl. Opt. 21, 1950-1955 (1982).
  18. S. Murshid, B. Grossman, P. Narakorn, "Spatial domain multiplexing: A new dimension in fiber optic multiplexing," Opt. Laser Technol. 40, 1030-1036 (2008).
  19. J. Carpenter, T. Wilkinson, "All optical mode-multiplexing using holography and multimode fiber couplers," J. Lightw. Technol. 30, 1978-1984 (2012).
  20. M. Karlsson, "Probability density functions of the differential group delay in optical fiber communication systems," J. Lightw. Technol. 19, 324-331 (2001).
  21. J. P. Gordon, H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers," Proc. Nat. Acad. Sci. (2000) pp. 4541-4550.
  22. P. Lu, L. Chen, X. Bao, "Statistical distribution of polarization dependent loss in the presence of polarization mode dispersion in single mode fibers," IEEE Photon. Technol. Lett. 13, 451-453 (2001).
  23. A. Glatarossa, L. Palmieri, "The exact statistics of polarization-dependent loss in fiber-optic links," IEEE Photon. Technol. Lett. 15, 57-59 (2003).
  24. K.-P. Ho, "Central limits for the products of free random variables," http://arxiv.org/abs/1101.5220.
  25. J. G. Proakis, Digital Communications (McGraw-Hill, 2000).
  26. M. L. Mehta, Random Matrices (Elsevier-Academic, 2004).
  27. H. Buchholz, The Confluent Hypergeometric Function (Springer, 1969) pp. 97.
  28. L. López, "Asymptotic expansions of the Whittaker functions for large order parameter," Methods Appl. Anal. 6, 249-256 (1999).
  29. J. Abad, J. Sesma, "Computation of the regular confluent hypergeometric function," Mathematica J. 5, 74-76 (1995).
  30. E. T. Whittaker, G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, 1927).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited