OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 23 — Dec. 1, 2012
  • pp: 3727–3735

Transmission Analysis of OFDM-Based Services Over Line-of-Sight Indoor Infrared Laser Wireless Links

Dimitar Radkov Kolev, Kazuhiko Wakamori, and Mitsuji Matsumoto

Journal of Lightwave Technology, Vol. 30, Issue 23, pp. 3727-3735 (2012)

View Full Text Article

Acrobat PDF (1811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Radio-on-free space optical (RoFSO) communication systems are gaining popularity because of their ability to transmit simultaneously multiple radio frequency signals comprised of various wireless services over FSO links using wavelength division multiplexing technology. We propose a new approach of use of the RoFSO technology for high-speed indoor communication systems and introduce an analytical model for the transmission of orthogonal frequency-division multiplexing-based signals over a line-of-sight link with diverged Gaussian beam. We have analyzed the laser safety restrictions for the proposed system and derived a closed-form bit-error probability, taking into account the ambient noise and laser diode nonlinear distortion. Simulation results are shown and the system performance is discussed.

© 2012 IEEE

Dimitar Radkov Kolev, Kazuhiko Wakamori, and Mitsuji Matsumoto, "Transmission Analysis of OFDM-Based Services Over Line-of-Sight Indoor Infrared Laser Wireless Links," J. Lightwave Technol. 30, 3727-3735 (2012)

Sort:  Year  |  Journal  |  Reset


  1. A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, M. Matsumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by gamma-gamma distribution," IEEE Photon. J. 2, 510-520 (2010).
  2. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, D. Richards, "Subcarrier multiplexing for high-speed optical transmission," J. Lightw. Technol. 20, 417-427 (2002).
  3. J. M. Cioffi, "A multicarrier primer," ANSI Contribution T1E1 4/91-157 Boca RatonFL (1991).
  4. J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).
  5. H. Al-Raweshidy, S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  6. R. V. Nee, R. Prasad, OFDM for Wireless Multimedia Communications (Artech House, 2000).
  7. S. K. Hashemi, Z. Ghassemlooy, L. Chao, D. Benhaddou, "Channel estimation for indoor diffuse optical OFDM wireless communications," Proc. 5th Int. Conf. Broadband Commun., Netw. Syst. (2008) pp. 431-434.
  8. S. K. Hashemi, Z. Ghassemlooy, L. Chao, D. Benhaddou, "Orthogonal frequency division multiplexing for indoor optical wireless communications using visible light LEDs," Proc. 6th Int. Symp. Commun. Syst., Netw. Digital Signal Process. (2008) pp. 174-178.
  9. O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc.—Optoelectron. 152, 199-204 (2005).
  10. H. Wang, K. Jia, "An orthogonal space-time block code with Q-PPM modulation," Proc. 2010 Int. Conf. Comput. Appl. Syst. Model. (2010) pp. V9-111-V9-115.
  11. B. Naila, A. Bekkali, K. Kazaura, M. Matsumoto, "BPSK intensity modulated free-space optical communications using aperture averaging," Proc. Int. Conf. Photon. (2010) pp. 1-5.
  12. N. Letzepis, A. G. Fabregas, "Outage probability of the MIMO Gaussian free-space optical channel with PPM," Proc. IEEE Int. Symp. Inf. Theory (2008) pp. 2649-2653.
  13. D. R. Kolev, K. Wakamori, M. Matsumoto, T. Kubo, T. Yamada, N. Yoshimoto, "Gigabit indoor laser communication system for a mobile user with MEMS mirrors and image sensors," presented at the Int. Workshop Opt. Wireless Commun. PisaItaly (2012).
  14. A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fund. Electron., Commun. Comput. Sci. E92-A, 2697-2705 (2009).
  15. M. F. Jensen, U. Krühne, L. H. Christensen, O. Geschke, "Refractive microlenses produced by excimer laser radiation of poly (methyl methacrylate)," J. Micromech. Microeng. 15, 91-97 (2005).
  16. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).
  17. L. Jiang, W. Noonpakdee, H. Takano, S. Shimamoto, "Evaluation of reflected light effect for indoor wireless optical CDMA system," Proc. IEEE Wireless Commun. Netw. Conf. (2011) pp. 1688-1693.
  18. Z. Ghassemlooy, A. R. Hayes, B. Wilson, "Reducing the effects of intersymbol interference in diffuse DPIM optical wireless communications," IEE Proc.—Optoelectron. 150, 445-452 (2003).
  19. A. C. Boucouvalas, "Indoor ambient light noise and its effect on wireless optical links," IEE Proc.—Optoelectron. 143, 334-338 (1996).
  20. A. J. C. Moreira, R. T. Valadas, A. M. de Oliveira Duarte, "Optical interference produced by artificial light," Wireless Netw. 3, 131-140 (1997).
  21. F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).
  22. R. R. Ingues, S. M. Idrus, Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (CRC Press, 2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited