OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 3 — Feb. 1, 2012
  • pp: 337–343

Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter

Yi Zou, Xiaopeng Dong, Ganbin Lin, and Reza Adhami

Journal of Lightwave Technology, Vol. 30, Issue 3, pp. 337-343 (2012)

View Full Text Article

Acrobat PDF (1307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we present a wide range displacement sensor system using the fiber Bragg grating (FBG), spring, and a twin-core fiber. The quantitative analysis of the theory of the cascaded FBG–spring system for displacement measurement is introduced together with the basic working principle of a twin-core fiber filter. The feasibility of the method is demonstrated in experiments which shows the output optical intensity linear relation with the displacement. The characteristics of the wide range, high resolution, low cost, and compact scheme would make this method more applicable.

© 2011 IEEE

Yi Zou, Xiaopeng Dong, Ganbin Lin, and Reza Adhami, "Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter," J. Lightwave Technol. 30, 337-343 (2012)

Sort:  Year  |  Journal  |  Reset


  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).
  2. S. M. Melle, T. Alavic, S. Karr, T. Coroy, K. Lui, R. M. Measures, "A Bragg grating-tuned fiber laser strain sensor system," IEEE Photon. Technol. Lett. 5, 263-266 (1993).
  3. Y. J. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
  4. V. Dewynter-Marty, P. Ferdinand, "Embedded fiber Bragg grating sensors for industrial composite cure monitoring," J. Intell. Mater. Syst. Struct. 9, 785-787 (1998).
  5. Y. L. Lo, F. Y. Xiao, "Measurement of corrosion and temperature using a single-pitch Bragg grating fiber sensor," J. Intell. Mater. Syst. Struct. 9, 800-807 (1998).
  6. Y. Zou, X. Dong, "Demodulation of the FBG temperature sensor with the tunable twin-core fiber," Microw. Opt. Technol. Lett. 53, 81-84 (2011).
  7. S. M. Melle, K. Liu, R. M. Measures, "A passive wavelength demodulation system for guided-wave Bragg grating sensors," IEEE Photon. Technol. Lett. 4, 516-518 (1992).
  8. M. A. Davis, A. D. Kersey, "All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
  9. Q. Wang, G. Farrell, "Multimode-fiber-based edge filter for optical wavelength measurement application and its design," Microw. Opt. Technol. Lett. 48, 900-902 (2006).
  10. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. Technol. 9, 1969-1973 (1998).
  11. D. A. Jackson, A. B. L. Ribeiro, "Simple multiplexing scheme for a fibre-optic grating sensor network," Opt. Lett. 18, 1192-1194 (1993).
  12. A. D. Kersey, "Interrogation and multiplexing techniques for fiber Bragg grating strain sensors," Proc. Int. Soc. Opt. Eng. (1993) pp. 30-48.
  13. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, "Novel interrogating system for fibre Bragg grating sensors using an acousto-optic tunable filter," Electron. Lett. 29, 1510-1511 (1993).
  14. A. D. Kersey, T. A. Berkoff, W. W. Morey, "High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
  15. A. D. Kersey, T. A. Berkoff, W. W. Morey, "Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection," Opt. Lett. 18, 72-74 (1993).
  16. Y. J. Rao, D. A. Jackson, L. Zhang, I. Bennion, "Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors," Opt. Lett. 21, 1556-1558 (1996).
  17. X. P. Dong, B. C. B. Chu, B. Yi, K. S. Chiang, "Novel method for the demodulation of wavelength shift of fiber Bragg gratings," Proc. Int. Soc. Opt. Eng. (2001) pp. 184-187.
  18. G. A. Ball, W. W. Morey, P. K. Cheo, "Fiber laser source/analyzer for Bragg grating sensor array interrogation," J. Lightw. Technol. 12, 700-703 (1994).
  19. S. H. Yun, D. J. Richardson, B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
  20. T. Okoshi, K. Kikuchi, A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
  21. A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, "All-optical switching and multifrequency generation in a dual-core photonic crystal fiber," Opt. Lett. 31, 1480-1482 (2006).
  22. Y. J. Rao, D. A. Jackson, "A prototype multiplexing system for use with a large number of fibre-optic-based extrinsic Fabry–Perot sensors exploiting low coherence interrogation," Proc. Int. Soc. Opt. Eng. (1995) pp. 90-98.
  23. A. W. Snyder, J. D. Love, Waveguide Theory (Chapman & Hall, 1983).
  24. Y. Chen, "Effect of twist on fused couplers," Appl. Opt. 27, 4802-4806 (1988).
  25. R. Ulrich, A. Simon, "Polarization optics of twisted single-mode fibers," Appl. Opt. 18, 2241-2251 (1979).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited