OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 4 — Feb. 12, 2012
  • pp: 427–447

A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene

Shinji Yamashita

Journal of Lightwave Technology, Vol. 30, Issue 4, pp. 427-447 (2012)


View Full Text Article

Acrobat PDF (3443 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

One and two dimensional forms of carbon, Carbon nanotube and graphene, have interesting and useful not only electronic but also photonic properties. This tutorial will review their photonic properties, linear and nonlinear, and applications of nonlinear photonic properties as laser mode lockers and nonlinear functional devices.

© 2011 IEEE

Citation
Shinji Yamashita, "A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene," J. Lightwave Technol. 30, 427-447 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-4-427


Sort:  Year  |  Journal  |  Reset

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, "C$_{60}$: Buckminsterfullerene," Nature 318, 162-163 (1985).
  2. http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/.
  3. S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, 56-58 (1991).
  4. S. Iijima, T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature 363, 603-605 (1993).
  5. P. R. Wallace, "The band theory of graphite," Phys. Rev. 71, 622-634 (1947).
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).
  7. A. K. Geim, K. S. Novoselov, "The rise of graphene," Nature Materials 6, 183-191 (2007).
  8. http://nobelprize.org/nobel_prizes/physics/laureates/2010/.
  9. P. Avouris, M. Freitag, V. Perebeinos, "Carbon-nanotube photonics and optoelectronics," Nature Photon. 2, 341-350 (2008).
  10. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photon. 4, 611-622 (2010).
  11. S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, "A noise suppressing saturable absorber at 1550 nm based on carbon nanotube technology," Proc. Opt. Fiber Commun. Conf. (2003).
  12. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, "Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes," Proc. Opt. Fiber Commun. Conf. (2003).
  13. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightw. Technol. 22, 51-56 (2004).
  14. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, "Ultrafast fiber pulsed lasers incorporating carbon nanotubes," J. Sel. Topics Quantum Electron. 10, 137-146 (2004).
  15. Y. W. Song, S. Y. Set, S. Yamashita, "Novel Kerr shutter using carbon nanotubes deposited onto a 5-cm D-shaped fiber," Proc. Conf. Lasers Electro-Opt. (CLEO 2006) (2006).
  16. K. Kashiwagi, S. Yamashita, H. Yaguchi, C. S. Goh, S. Y. Set, "All optical switching using carbon nanotubes loaded planar waveguide," Proc. Conf. Lasers Electro-Opt. (CLEO 2006) (2006).
  17. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Functional Mater. 19, 3077-3083 (2009).
  18. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano 4, 803-810 (2010).
  19. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnol. 3, 563-568 (2008).
  20. P. R. Somani, S. P. Somani, M. Umeno, "Planer nano-graphenes from camphor by CVD," Chem. Phys. Lett. 430, 56-59 (2006).
  21. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett. 9, 30-35 (2009).
  22. T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, "Catalytic growth of single-walled nanotubes by laser vaporization," Chem. Phys. Lett. 243, 49-54 (1995).
  23. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, "Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study," J. Vac. Sci. Technol. A 19, 1800-1805 (2001).
  24. D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, A. Borgna, "A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst," J. Nanoparticle Res. 4, 131-136 (2002).
  25. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, "Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol," Chem. Phys. Lett. 360, 229-234 (2002).
  26. Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, "Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy," Chem. Phys. Lett. 385, 298-303 (2004).
  27. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, 1998).
  28. J. C. Charlier, X. Blasé, S. Roche, "Electronic and transport properties of nanotubes," Rev. Modern Phys. 79, 677-732 (2007).
  29. J. C. Charlier, P. C. Eklund, J. Zhu, A. C. Ferrari, "Electron and phonon properties of graphene: Their relationship with carbon nanotubes," Top. Appl. Phys. 111, 673-709 (2008).
  30. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, "The electronic properties of graphene," Rev. Modern Phys. 81, 109-162 (2009).
  31. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science 327, 662 (2010).
  32. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308 (2008).
  33. P. Avouris, J. Chen, "Nanotube electronics and optoelectronics," Mater. Today 9, 46-54 (2006).
  34. P. G. Collins, P. Avouris, "Nanotubes for electronics," Scientific Amer. 62-69 (2000).
  35. S. Maruyama, Fullerene and Carbon Nanotube Site http://www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html.
  36. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, "The optical resonances in carbon nanotubes arise from excitons," Science 308, 838-841 (2005).
  37. H. Liu, D. Nishide, T. Tanaka, H. Kataura, "Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography," Nature Commun. 2, 309-1-8 (2011).
  38. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, "Structure-assigned optical spectra of single-walled carbon nanotubes," Science 298, 2361-2366 (2002).
  39. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley-VCH, 2004).
  40. E. Gaufrès, N. Izard, X. L. Roux, D. M. Morini, S. Kazaoui, E. Cassan, L. Vivien, "Optical gain in carbon nanotubes," Appl. Phys. Lett. 96, 231105-1-3 (2010).
  41. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  42. G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic, 2008).
  43. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 2, 435-453 (1996).
  44. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
  45. M. E. Fermann, I. Hartl, "Ultrafast fiber laser technology," IEEE J. Sel. Topics Quantum Electron. 15, 191-206 (2009).
  46. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, L. Capes, "Ultrafast carrier dynamics in single-wall carbon nanotubes," Phys. Rev. Lett. 90, 057404-1-4 (2003).
  47. Y. C. Chen, N. Raravikar, L. Schadler, P. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, X. C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 $\mu$m," Appl. Phys. Lett. 81, 975-977 (2002).
  48. M. Ichida, Y. Hamanaka, H. Kataura, Y. Achiba, A. Nakamura, "Ultrafast relaxation dynamics of photoexcited states in semiconducting single-walled carbonnanotubes," Physica B: Condensed Matter 323, 237-238 (2002).
  49. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications," Adv. Mater. 15, 534-537 (2003).
  50. Y. Z. Ma, T. Hertel, Z. V. Vardeny, G. R. Fleming, L. Valkunas, "Ultrafast spectroscopy of carbon nanotubes," Topics of Appl. Physics 111, 321-353 (2008).
  51. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano, "Excited-state carrier lifetime in single-walled carbon nanotubes," Phys. Rev. B 71, (2005).
  52. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer, "Measurement of ultrafast carrier dynamics in epitaxial graphene," Appl. Phys. Lett. 92, 042116-1-3 (2008).
  53. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, C. N. R. Rao, "Femtosecond carrier dynamics and saturable absorption in graphene suspensions," Appl. Phys. Lett. 95, 191911-1-3 (2009).
  54. G. Xing, H. Guo, X. Zhang, T. C. Sum, C. Hon, A. Huan, "The physics of ultrafast saturable absorption in graphene," Opt. Exp. 18, 4564-4573 (2010).
  55. V. A. Margulis, T. A. Sizikova, "Theoretical study of third-order nonlinear optical response of semiconductor carbon nanotubes," Physica B 245, 173-189 (1998).
  56. H. S. Nalwa, "Organic materials for third-order nonlinear optics," Adv. Mater. 5, 341-358 (1993).
  57. J. S. Lauret, C. Voisin, G. Cassabois, J. Tignon, C. Delalande, Ph. Roussignol, O. Jost, L. Capes, "Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime," Appl. Phys. Lett. 85, 3572-3574 (2004).
  58. D. Shimamoto, T. Sakurai, M. Itoh, Y. A. Kim, T. Hayashi, M. Endo, M. Terrones, "Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique," Appl. Phys. Lett. 92, 081902-1-3 (2008).
  59. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov, "Coherent nonlinear optical response of graphene," Phys. Rev. Lett. 105, 097401-1-4 (2010).
  60. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, F. Rotermund, "Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers," Adv. Functional Mater. 20, 1937-1943 (2010).
  61. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, "Nanotube-polymer composites for ultrafast photonics," Adv. Mater. 21, 3874-3899 (2009).
  62. K. Fuse, A. Martinez, S. Yamashita, "Stability enhancement of carbon-nanotube-based mode-locked fiber laser by nitrogen sealing," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2011 (2011).
  63. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, S. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004).
  64. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, T. Kotake, S. Y. Set, "Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes," Jpn. J. Appl. Phys. 45, L17-L19 (2006).
  65. K. Kashiwagi, S. Yamashita, S. Y. Set, "Novel cost effective carbon nanotubes deposition technique using optical tweezer effect," Proc. SPIE Photonics West (2007).
  66. K. Kashiwagi, S. Yamashita, "Optically manipulated deposition of Carbon Nanotubes onto optical fiber end," Jpn. J. Appl. Phys. 46, L988-L990 (2007).
  67. J. W. Nicholson, R. S. Windeler, D. J. DiGiovanni, "Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces," Opt. Exp. 15, 9176-9183 (2007).
  68. K. Kashiwagi, S. Yamashita, S. Y. Set, "In-situ monitoring of optical deposition of carbon nanotubes onto fiber end," Opt. Exp. 17, 5711-5715 (2009).
  69. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, M. Tokumoto, "Carbon nanotube-poly (vinylalcohol) nanocomposite film devices: Applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors," Jpn. J. Appl. Phys. 44, 1621-1625 (2005).
  70. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, S. Yamashita, "Fabrication of carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices," Opt. Exp. 16, 11337-11343 (2008).
  71. Y. W. Song, S. Yamashita, C. S. Goh, S. Y. Set, "Carbon nanotube mode-lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers," Opt. Lett. 32, 148-150 (2007).
  72. Y. W. Song, K. Morimune, S. Y. Set, S. Yamashita, "Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers," Appl. Phys. Lett. 90, 021101-1-021101-3 (2007).
  73. K. Kieu, M. Mansuripur, "Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite," Opt. Lett. 32, 2242-2244 (2007).
  74. K. Kashiwagi, S. Yamashita, "Deposition of carbon nanotubes around microfiber via evanascent light," Opt. Exp. 17, 18364-18370 (2009).
  75. K. T. Dinh, Y. W. Song, S. Y. Set, S. Yamashita, "Realization of all-fiber tunable filter and high optical power blocker using thinned fiber Bragg gratings coated with carbon nanotubes," Appl. Phys. Exp. (2008).
  76. K. Kashiwagi, S. Yamashita, "Planar waveguide-type saturable absorber based on carbon nanotubes," Appl. Phys. Lett. 89, (2006).
  77. K. K. Chow, S. Yamashita, S. Y. Set, "Four-wave mixing based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide," Opt. Lett. 35, 2070-2072 (2010).
  78. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, D. Yeom, "Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber," Opt. Exp. 17, 21788-21793 (2009).
  79. A. Martinez, K. Zhou, I. Bennion, S. Yamashita, "In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing," Opt. Exp. 16, 15425-15430 (2008).
  80. A. Martinez, K. Zhou, I. Bennion, S. Yamashita, "Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber," Opt. Exp. 18, 11008-11014 (2010).
  81. T. Oomuro, R. Kaji, T. Itatani, H. Ishii, E. Itoga, H. Kataura, M. Yamashita, M. Mori, Y. Sakakibara, "Carbon nanotube-polyimide saturable absorbing waveguide made by simple photolithography," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2007 (2007).
  82. S. Uchida, A. Martinez, Y. Song, T. Ishigure, S. Yamashita, "Carbon nanotube-doped polymer optical fiber," Opt. Lett. 34, 3077-3079 (2009).
  83. Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, S. Yamashita, "Carbon nanotube-incorporated sol-gel glass for high-speed modulation of intracavity absorption of fiber lasers," Opt. Commun. 283, 3740-3742 (2010).
  84. Q. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, K. P. Loh, "Graphene-polymer nanofiber membrane for ultrafast photonics," Adv. Functional Mater. 20, 782-791 (2010).
  85. Y. M. Chang, H. Kim, J. H. Lee, Y. W. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers," Appl. Phys. Lett. 97, 211102-1-3 (2010).
  86. A. Martinez, K. Fuse, B. Xu, S. Yamashita, "Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing," Opt. Exp. 18, 23054-23061 (2010).
  87. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, "Graphene-based passively $Q$-switched dual-wavelength erbium-doped fiber laser," Opt. Lett. 35, 3709-3711 (2010).
  88. H. Kim, J. Cho, S. Y. Jang, Y. W. Song, "Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers," Appl. Phys. Lett. 98, 021104-1-3 (2011).
  89. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction," Appl. Phys. Lett. 96, 051122-1-3 (2010).
  90. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightw. Technol. 21, 2779-2790 (2003).
  91. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Topics Quantum Electron. 6, 1173-1185 (2000).
  92. H. Nong, M. Gicque, L. Bramerie, M. Perrin, F. Grillot, C. Levallois, A. Maalouf, S. Loualiche, "A direct comparison of single-walled carbon nanotubes and quantum-wells based subpicosecond saturable absorbers for all optical signal regeneration at 1.55 $\mu$m," Appl. Phys. Lett. 96, 061109-1-3 (2010).
  93. J. W. Nicholson, D. J. DiGiovanni, "High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes," IEEE Photon. Technol. Lett. 20, 2123-2125 (2008).
  94. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, "Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker," Appl. Phys. Lett. 88, 05118-1-3 (2006).
  95. A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, E. M. Dianov, "177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes," Appl. Phys. Lett. 92, 171113-1-3 (2008).
  96. F. Shohda, T. Shirato, M. Nakazawa, J. Mata, J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 $\mu$m with a fiber-connector-type SWNT/P3HT saturable absorber," Opt. Exp. 16, 20943-20948 (2008).
  97. S. M. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
  98. Y. W. Song, S. Yamashita, S. Maruyama, "Single-walled carbon nanotubes for high-energy optical pulse formation," Appl. Phys. Lett. 92, 021115-1-3 (2008).
  99. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, S. Y. Set, "5 GHz pulsed fiber Fabry–Perot laser mode-locked using carbon nanotubes," IEEE Photon. Technol. Lett. 17, 750-752 (2005).
  100. A. Martinez, S. Yamashita, "Multi-Gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Exp. 19, 6156-6163 (2011).
  101. K. H. Fong, K. Kikuchi, S. Y. Set, "High-energy ultrashort pulse generation from a fundamentally mode-locked fiber laser at 1.7 MHz," Proc. Opt. Fiber Commun. Conf. (2007).
  102. H. G. Rosa, E. A. de Souza, "58 kHz ultra-low repetition rate ultralong erbium-doped fiber laser mode-locked by carbon nanotubes," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2011 (2011).
  103. Y.-W. Song, S. Y. Set, S. Yamashita, C. S. Goh, T. Kotake, "1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes," IEEE Photon. Technol. Lett. 17, 1623-1625 (2005).
  104. C. S. Goh, K. Kikuchi, S. Y. Set, D. Tanaka, T. Kotake, J. Mark, S. Yamashita, T. Kobayashi, "Femtosecond mode-locking of a ytterbium-doped fiber laser using a carbon-nanotube-based mode-locker with ultra-wide absorption band," Proc. Conf. Lasers and Electro Opt. (CLEO 2005) (2005).
  105. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, J. R. Taylor, "Nanosecond-pulse fiber lasers mode-locked with nanotubes," Appl. Phys. Lett. 95, (2009).
  106. M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, E. Dianov, "1.93 $\mu$m mode-locked thulium fiber laser with a carbon nanotube absorber," Opt. Lett. 33, 1336-1338 (2008).
  107. K. Kieu, F. W. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
  108. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, O. G. Okhotnikov, "Carbon nanotube films for ultrafast broadband technology," Opt. Exp. 17, 2358-2363 (2009).
  109. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari, "Wideband-tuneable, nanotube mode-locked, fiber laser," Nature Nanotechnology 3, 738-742 (2008).
  110. J. C. Travers, J. Morgenweg, E. D. Obraztsova, A. I. Chernov, E. J. R. Kelleher, S. V. Popov, "Using the ${\rm E}_{22}$ transition of carbon nanotubes for fiber laser mode-locking," Laser Phys. Lett. 8, 144-149 (2011).
  111. K. Kieu, R. J. Jones, N. Peyghambarian, "Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system," IEEE Photon. Technol. Lett. 22, 1521-1523 (2010).
  112. T. H. Wu, K. Kieu, N. Peyghambarian, R. J. Jones, "Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design," Opt. Exp. 19, 5313-5318 (2011).
  113. K. Kieu, R. J. Jones, N. Peyghambarian, "High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser," Opt. Exp. 18, 21350-21355 (2010).
  114. B. Oktem, C. Ulgudur, F. O. Ilday, "Soliton-similariton fiber laser," Nature Photon. 4, 307-311 (2010).
  115. A. Chong, J. Buckley, W. Renninger, F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Exp. 14, 10095-10100 (2006).
  116. K. Kieu, F. W. Wise, "Self-similar and stretched-pulse operation of erbium-doped fiber lasers with carbon nanotubes saturable absorber," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2009 (2009).
  117. K. Kieu, F. W. Wise, "All-fiber normal-dispersion femtosecond laser," Opt. Exp. 16, 11453-11458 (2008).
  118. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes," Opt. Exp. 13, 8025-8031 (2005).
  119. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Dı´az, V. Petrov, U. Griebner, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
  120. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, F. Rotermund, "Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 2449-2451 (2008).
  121. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Dı´az, "Passive mode-locking of a Tm-doped bulk laser near 2 $\mu$m using a carbon nanotube saturable absorber," Opt. Exp. 17, 11007-11012 (2009).
  122. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, U. Griebner, "Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 $\mu$m," Opt. Exp. 17, 20109-20116 (2009).
  123. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, F. Rotermund, "Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti: Sapphire laser," Opt. Exp. 19, 7833-7838 (2011).
  124. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, A. K. Kar, "320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber," Appl. Phys. Lett. 97, 111114-1-3 (2010).
  125. Y. W. Song, S. Yamashita, C. S. Goh, S. Y. Set, "Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes," Opt. Lett. 32, 430-432 (2007).
  126. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, "A dual-regime mode-locked/Q-switched laser using a saturable absorber incorporating carbon nanotubes (SAINT)," Proc. Conf. Lasers and Electro-Opt. (CLEO 2003) (2003).
  127. B. Dong, C. Y. Liaw, J. Hao, J. Hu, "Nanotube $Q$-switched low-threshold linear cavity tunable erbium-doped fiber laser," Appl. Opt. 49, 5989-5992 (2010).
  128. S. Y. Set, H. Yaguchi, C. S. Goh, D. X. Wang, S. Yamashita, "Non-synchronous optical sampling and data pattern recovery using a repetition-rate-tunable CNT pulsed laser," Jpn. J. Appl. Phys. 47, 6809-6811 (2008).
  129. Technical Note by Alnair Laboratories. http://www.alnair-labs.com/.
  130. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, B. R. Washburn, "A phase-stabilized carbon nanotube fiber laser frequency comb," Opt. Exp. 17, 14115-14120 (2009).
  131. K. Kieu, A. Evans, J. Klein, J. Barton, N. Peyghambarian, "Ultra-high resolution all-reflective OCT system with a compact fiber-based supercontinuum source," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2011 (2011).
  132. http://www.alnair-labs.com/.
  133. http://www.kphotonics.com/.
  134. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett. 97, 203106-1-3 (2010).
  135. H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh, "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker," Appl. Phys. Lett. 95, 141103-1-3 (2009).
  136. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser," Appl. Phys. Lett. 96, 111112-1-3 (2010).
  137. A. Martinez, S. Yamashita, "Fiber Fabry-Pérot laser mode-locked by graphene for the generation of supercontinuum with 0.08 nm mode spacing," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2011 (2011).
  138. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, D. Y. Tang, "Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber," Appl. Phys. Lett. 96, 031106-1-3 (2010).
  139. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," Appl. Phys. Lett. 98, 073106-1-3 (2011).
  140. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  141. K. K. Chow, S. Yamashita, Y. W. Song, "A widely tunable wavelength conversion based on nonlinear polarization rotation in a carbon nanotubes deposited D-shaped fiber," Opt. Exp. 17, 7664-7669 (2009).
  142. K. K. Chow, S. Yamashita, "Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion," Opt. Exp. 17, 15608-15613 (2009).
  143. K. K. Chow, M. Tsuji, S. Yamashita, "Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion," Appl. Phys. Lett. 96, 061104-1-3 (2010).
  144. G. E. Villanueva, M. B. Jakubinek, B. Simard, C. J. Oton, J. Matres, L. Y. Shao, P. P. Millán, J. Albert, "Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings," Opt. Lett. 36, 2104-2106 (2011).
  145. B. Xu, A. Martinez, K. Fuse, S. Yamashita, "Generation of four wave mixing in graphene and carbon nanotubes optically deposited onto fiber ferrules," Proc. Conf. Lasers and Electro-Opt. (CLEO) 2011 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited