OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 7 — Apr. 1, 2012
  • pp: 944–952

Broadband Mach–Zehnder Switch for Photonic Networks on Chip

Giovanna Calò, Antonella D'Orazio, and Vincenzo Petruzzelli

Journal of Lightwave Technology, Vol. 30, Issue 7, pp. 944-952 (2012)

View Full Text Article

Acrobat PDF (1349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we propose a broadband silicon Mach–Zehnder switch (MZS) for wavelength division multiplexing applications on photonic networks on chip. The proposed reconfigurable switch is based on a single-stage three-waveguide interferometric configuration in which the phase shift is achieved via a p-i-n diode. The device is analyzed by the coupled-mode theory and by the finite-difference beam propagation method. The proposed configuration leads to a considerable increase in the bandwidth with respect to the conventional MZS. For example, the two-waveguide MZS with a gap g=0.30 μm between the two coupled waveguides exhibits bandwidth Δλ =60 nm, crosstalk CT = - 15 dB, and insertion loss IL = 1.1 dB. Conversely, a bandwidth Δλ =115 nm is achieved for the three-waveguide configuration to parity of the other parameters.

© 2012 IEEE

Giovanna Calò, Antonella D'Orazio, and Vincenzo Petruzzelli, "Broadband Mach–Zehnder Switch for Photonic Networks on Chip," J. Lightwave Technol. 30, 944-952 (2012)

Sort:  Year  |  Journal  |  Reset


  1. A. V. Krishnamoorthy, R. Ho, X. Z. Zheng, H. Schwetman, J. Lexau, P. Koka, G. L. Li, I. Shubin, J. E. Cunningham, "Computer systems based on silicon photonic interconnects," Proc. IEEE 97, 1337-1361 (2009).
  2. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R. G. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Topics Quantum Electron. 12, 1394-1401 (2006).
  3. G. Calò, A. Farinola, V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," J. Opt. Soc. Amer. B 28, 1668-1679 (2011).
  4. W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Exp. 15, 17106-17113 (2007).
  5. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Exp. 15, 430-36 (2007).
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Exp. 13, 3130-3135 (2005).
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Exp. 15, 660-668 (2007).
  8. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, "High contrast 40 Gbit/s optical modulation in silicon," Opt. Exp. 19, 11507-11516 (2011).
  9. B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, "All-optical comb switch for multiwavelength message routing in silicon photonic networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
  10. J. Van Campenhout, W. M. J. Green, S. Assefa, Y. A. Vlasov, "Low-power, 2$\,\times\,$2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks," Opt. Exp. 17, 24020-24029 (2009).
  11. J. Van Campenhout, W. M. J. Green, Y. A. Vlasov, "Design of a digital, ultra-broadband electro-optic switch for reconfigurable networks-on-chip," Opt. Exp. 12, 23793-23801 (2009).
  12. K. Kishioka, "A design method to achieve wide wavelength-flattened responses in the directional coupler-type optical power splitters," J. Lightw. Technol. 19, 1705-1715 (2001).
  13. X. Lin, D. Liu, J.-J. He, "Design and analysis of 2$\,\times\,$2 half-wave waveguide couplers," Appl. Opt. 48, F18-F23 (2009).
  14. P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, "A three-waveguide polarization independent power splitter on lithium niobate substrate," Opt. Commun. 168, 349-354 (1999).
  15. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
  16. W. Huang, "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Amer. A 11, 963-982 (1994).
  17. W. Huang, C. Xu, S. Chu, S. K. Chaudhuri, "The finite-difference vector beam propagation method: Analysis and assessment," J. Lightw. Technol. 10, 295-305 (1992).
  18. A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, F. Prudenzano, "Design of active switches using an In$_{\rm x}$Ga$_{1-{\rm x}}$As$_{\rm y}$P$_{1-{\rm y}}$/InP heterostructure," Int. J. Optoelectron. 11, 19-27 (1997).
  19. E. Marom, O. Ramer, S. Ruschin, "Relation between normal-mode and coupled-mode analyses of parallel waveguides," IEEE J. Quantum Electron. QE-20, 1311-1319 (1984).
  20. Y.-M. Kim, S.-P. Han, C.-M. Kim, "Crosstalks of two-waveguide and three-waveguide directional couplers," Opt. Quantum Electron. 32, 1257-1268 (2000).
  21. M. De Sario, A. D'Orazio, V. Lanave, "Realistic design of a WDM duplexer made from LiNbO$_{3}$ optical filters," J. Phys. D 21, s147-s149 (1988).
  22. J. Buus, "The effective index method and its application to semiconductor laser," IEEE J. Quantum Electron. 18, 1083-1089 (1982).
  23. Handbook of Optics (McGraw-Hill, 2009).
  24. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. R. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov, "Non-blocking 4$\,\times\,$4 electro-optic silicon switch for on-chip photonic networks," Opt. Exp. 19, 47-54 (2011).
  25. V. M. N. Passaro, F. Dell'Olio, "Scaling and optimization of MOS optical modulators in nanometer SOI waveguides," IEEE Trans. Nanotechnol. 7, 401-408 (2008).
  26. R. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
  27. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Topics Quantum Electron. 16, 316-324 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited