OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 1 — Jan. 1, 2013
  • pp: 145–151

Generation of Versatile Waveforms From CW Light Using a Dual-Drive Mach-Zehnder Modulator and Employing Chromatic Dispersion

Bo Dai, Zhensen Gao, Xu Wang, Hongwei Chen, Nobuyuki Kataoka, and Naoya Wada

Journal of Lightwave Technology, Vol. 31, Issue 1, pp. 145-151 (2013)


View Full Text Article

Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we analyze waveform generation using a single-stage dual-drive Mach-Zehnder modulator and a dispersive fiber. We derive a mathematical expression for the waveform generation process in the time domain and use this to propose a waveform generation algorithm. Furthermore, versatile waveforms, such as short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse, are theoretically generated under different combinations of the four variables. The generated waveforms are analyzed in terms of the gradient and the instantaneous frequency. Finally, the waveform generation is experimentally demonstrated at the repetition rate of 10 GHz.

© 2012 IEEE

Citation
Bo Dai, Zhensen Gao, Xu Wang, Hongwei Chen, Nobuyuki Kataoka, and Naoya Wada, "Generation of Versatile Waveforms From CW Light Using a Dual-Drive Mach-Zehnder Modulator and Employing Chromatic Dispersion," J. Lightwave Technol. 31, 145-151 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-1-145


Sort:  Year  |  Journal  |  Reset

References

  1. J. A. Salehi, A. M. Weiner, J. P. Heritage, "Coherent ultrashort light pulse code-division multiple-access communication systems," J. Lightw. Technol. 8, 478-491 (1990).
  2. W. S. Warren, H. Rabitz, M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259, 1581-1589 (1993).
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
  4. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
  5. H. Chi, F. Zeng, J. Yao, "Photonic generation of microwave signals based on pulse shaping," Photon. Tech. Lett. 19, 668-670 (2007).
  6. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, S. J. B. Yoo, "32 phase $\, {\times}$32 amplitude optical arbitrary waveform generation," Opt. Lett. 32, 865-867 (2007).
  7. X. Zhou, X. Zheng, H. Wen, H. Zhang, Y. Guo, B. Zhou, "Optical frequency comb based on cascading intensity modulation for optical arbitrary waveform generation," Asia Communications and Photonics Conference and Exhibition (ACP'10) (2010).
  8. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner, "Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms," Opt. Lett. 35, 3234-3236 (2010).
  9. T. Sakamoto, T. Kawanishi, M. Izutsu, "Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator," Opt. Lett. 32, 1515-1517 (2007).
  10. T. Sakamoto, T. Kawanishi, M. Tsuchiya, "10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator," Opt. Lett. 33, 890-892 (2008).
  11. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, M. Tsuchiya, "Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder-modulator based flat comb generator and dispersion-flattened dispersion decreasing fiber," Opt. Lett. 33, 1192-1194 (2008).
  12. A. M. Weiner, J. P. Heritage, E. M. Kirschner, "High resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
  13. F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, D. J. Richardson, "An efficient wavelength converter exploiting a grating-based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).
  14. P. Petropoulos, M. Ibsen, A. D. Ellis, D. J. Richardson, "Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating," J. Lightw. Tech. 19, 746-752 (2001).
  15. Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
  16. Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photonics 1, 463-467 (2007).
  17. R. E. Saperstein, D. Panasenko, Y. Fainman, "Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber," Opt. Lett. 29, 501-503 (2004).
  18. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, Y. Fainman, "Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses," J. Opt. Soc. Am. B 22, 2427-2436 (2005).
  19. B. Dai, Z. Gao, X. Wang, N. Kataoka, N. Wada, "Versatile waveform generation using a single-stage dual-drive Mach-Zehnder modulator," Elect. Lett. 47, 336-338 (2011).
  20. J. C. Cartledge, "Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides," Photon. Technol. Lett. 7, 1090-1092 (1995).
  21. G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection," J. Quantum Elect. QE-20, 1208-1216 (1984).
  22. M. Govind, T. N. Ruckmongathan, "Trapezoidal and triangular waveform profiles for reducing power dissipation in liquid crystal displays," J. Display Technol. 4, 166-172 (2008).
  23. "Federal communications commission," Revision of Part 15 of the Commissions Rules Regarding Ultra-Wideband Transmission Systems (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited