OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 1 — Jan. 1, 2013
  • pp: 177–182

Single-Polarization Elliptical-Hole Lattice Core Photonic-Bandgap Fiber

Masashi Eguchi and Yasuhide Tsuji

Journal of Lightwave Technology, Vol. 31, Issue 1, pp. 177-182 (2013)

View Full Text Article

Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In photonic bandgap (PBG) fibers, light is confined by a photonic bandgap caused by a periodic structure of air holes in the cladding regions. The doubly degenerate fundamental mode in ideal PBG fiber structures becomes slightly nondegenerate in actually produced fibers, and this causes polarization instability and polarization mode dispersion. Here, to avoid these problems, we propose a novel absolutely single-polarization PBG fiber structure with an elliptical-hole lattice core. A PBG fiber with a single-polarization bandwidth of 420 nm is numerically demonstrated. Furthermore, based on the proposed fiber structure, we report another single-polarization PBG fiber that has two absolutely single-polarization bands being orthogonal to each other.

© 2012 IEEE

Masashi Eguchi and Yasuhide Tsuji, "Single-Polarization Elliptical-Hole Lattice Core Photonic-Bandgap Fiber," J. Lightwave Technol. 31, 177-182 (2013)

Sort:  Year  |  Journal  |  Reset


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996) [errata: ibid. vol. 22, p. 484, 1997.].
  2. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
  3. J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007).
  4. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999).
  5. S. E. Barkou, J. Broeng, A. Bjarklev, "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect," Opt. Lett. 24, 46-48 (1999).
  6. J. Broeng, T. Søndergaard, S. E. Barkou, P. M. Barbeito, A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fibres," J. Opt. A 1, 477-482 (1999).
  7. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
  8. J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98 (2000).
  9. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Opt. Lett. 25, 796-798 (2000).
  10. T. Hass, S. Belau, T. Doll, "Realistic monomode air-core honeycomb photonic bandgap fiber with pockets," J. Lightwave Technol. 23, 2702-2706 (2005).
  11. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001).
  12. K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," Photon. Technol. Lett. 15, 1384-1386 (2003).
  13. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," Photon. Technol. Lett. 16, 182-184 (2004).
  14. J. R. Folkenberg, M. D. Nielsen, C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005).
  15. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, A. Tünnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13, 7621-7630 (2005).
  16. M. Eguchi, Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode," Opt. Lett. 32, 2112-2114 (2007).
  17. M. Y. Chen, Y. K. Zhang, "Improved design of polarization-maintaining photonic crystal fibers," Opt. Lett. 33, 2542-2544 (2008).
  18. A. Ferrando, J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers," Appl. Phys. Lett. 78, 3184-3186 (2001).
  19. M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanczyk, T. Nasilowski, F. Berghmans, H. Thienpont, "Single-polarization single-mode photonic band gap fiber," Acta Physica Polonica A 111, 239-245 (2007).
  20. R. Goto, S. D. Jackson, K. Takenaga, "Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts," Opt. Lett. 34, 3119-3121 (2009).
  21. A. Cerqueira S., Jr.D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, H. L. Fragnito, "Broadband single-polarization guidance in hybrid photonic crystal fibers," Opt. Lett. 36, 133-135 (2011).
  22. A. Cerqueira S., Jr.F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
  23. M. J. Steel, R. M. Osgood, Jr."Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
  24. Y. C. Liu, Y. Lai, "Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis," Opt. Express 13, 225-235 (2005).
  25. T. A. Birks, J. C. Knight, P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  26. K. Hayata, M. Eguchi, M. Koshiba, M. Suzuki, "Vectorial wave analysis of side-tunnel type polarization-maintaining optical fibers by variational finite elements," J. Lightwave Technol. 4, 1090-1096 (1986).
  27. Y. Tsuji, M. Koshiba, "Adaptive mesh generation for full-vectorial guided-mode and beam-propagation solutions," J. Select. Topics Quantum Electron. 6, 163-169 (2000).
  28. W. Belardi, G. Bouwmans, L. Provino, M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," J. Quantum Electron. 41, 1558-1564 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited