OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 1 — Jan. 1, 2013
  • pp: 81–86

Novel Design of Ultra-Compact Triangular Lattice Silica Photonic Crystal Polarization Converter

Mohamed Farhat O. Hameed, Maher Abdelrazzak, and S. S. A. Obayya

Journal of Lightwave Technology, Vol. 31, Issue 1, pp. 81-86 (2013)


View Full Text Article

Acrobat PDF (897 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel design of ultra-compact polarization rotator (PR) based on triangular lattice silica photonic crystal fiber is proposed and analyzed. The suggested design has a central air hole which can be shifted in x and y directions to achieve complete polarization rotation. The influence of the different structure geometrical parameters and operating wavelength on the PR performance is investigated. The simulation results are obtained using full vectorial finite difference method as well as full vectorial finite difference beam propagation method. The numerical results reveal that the reported PR can provide nearly 100% polarization conversion ratio with a device length of 206 µm. It is also expected that over the 1.5–1.6 µm wavelength range, polarization conversion would be more than 99%.

© 2012 IEEE

Citation
Mohamed Farhat O. Hameed, Maher Abdelrazzak, and S. S. A. Obayya, "Novel Design of Ultra-Compact Triangular Lattice Silica Photonic Crystal Polarization Converter," J. Lightwave Technol. 31, 81-86 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-1-81


Sort:  Year  |  Journal  |  Reset

References

  1. I. Morita, K. Tanka, N. Edagawa, M. Suzuki, "40 Gb/s single-channel soliton transmission over transoceanic distances by reducing Gordon-Haus timing jitter and soliton-soliton interaction," J. Lightw. Technol. 2, 2506-2511 (1999).
  2. S. Obayya, Computational Photonics (Wiley, 2011) pp. 50-63.
  3. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
  4. K. Bayat, S. K. Chaudhuri, S. Safavi-Naeini, "Ultra-compact photonic crystal based polarization rotator," Opt. Express 17, 7145-7158 (2009).
  5. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Beam propagation modelling of polarization rotation in deeply etched semiconductor bent waveguides," IEEE Photon. Technol. Lett. 13, 681-683 (2001).
  6. S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, K. T. V. Grattan, "Full vectorial finite element modeling of novel polarization rotators," Opt. Quantum Electron. 35, 297-312 (2003).
  7. B. M. A. Rahman, S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Grattan, H. A. El-Mikati, "Design and characterisation of compact single-section passive polarization rotator," J. Lightw. Technol. 19, 512-519 (2001).
  8. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Improved design of a polarization converter based on semicondutor optical waveguide bends," Appl. Opt. 40, 5395-5401 (2001).
  9. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 483-7496 (2005).
  10. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. Alkeskjold, A. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
  11. M. F. O. Hameed, S. S. A. Obayya, "Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber," J. Lightw. Technol. 28, 806-815 (2010).
  12. M. F. O. Hameed, S. S. A. Obayya, "Polarization rotator based on soft glass photonic crystal fiber with liquid crystal core," J. Lightw. Technol. 29, 2725-2731 (2011).
  13. M. F. O. Hameed, S. S. A. Obayya, "Design of passive polarization rotator based on silica photonic crystal fiber," Opt. Lett. 36, 3133-3135 (2011).
  14. M. F. O. Hameed, S. S. A. Obayya, H. A. El-Mikati, H. A. El-Mikati, "Passive polarization converters based on photonic crystal fiber with L-shaped core region," J. Lightw. Technol. 30, 283-289 (2012).
  15. A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).
  16. W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).
  17. W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29, 2639-2649 (1993).
  18. P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  19. S. Haxha, H. Ademgil, "Novel design of photonic crystal fibers with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area," J. Opt. Commun. 281, 278-286 (2008).
  20. C. M. Weinert, H. Heidrich, "Vectorial simulation of passive TE/TM mode converter devices on InP," IEEE Photon. Technol. Lett. 5, 324-326 (1993).
  21. J. C. Knight, J. Broeng, T. A. Birks, P. St., J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited