OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 1 — Jan. 1, 2013
  • pp: 94–98

Broadband Tunable All-Fiber Polarization Interference Filter Based on 45° Tilted Fiber Gratings

Zhijun Yan, Hushan Wang, Kaiming Zhou, Yishan Wang, Wei Zhao, and Lin Zhang

Journal of Lightwave Technology, Vol. 31, Issue 1, pp. 94-98 (2013)


View Full Text Article

Acrobat PDF (1088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/°C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings.

© 2012 IEEE

Citation
Zhijun Yan, Hushan Wang, Kaiming Zhou, Yishan Wang, Wei Zhao, and Lin Zhang, "Broadband Tunable All-Fiber Polarization Interference Filter Based on 45° Tilted Fiber Gratings," J. Lightwave Technol. 31, 94-98 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-1-94

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited