OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 10 — May. 15, 2013
  • pp: 1551–1558

Acousto-Optic Effect in Microstructured Polymer Fiber Bragg Gratings: Simulation and Experimental Overview

Carlos A. F. Marques, Lúcia Bilro, Lutful Kahn, Roberson A. Oliveira, David J. Webb, and Rogério N. Nogueira

Journal of Lightwave Technology, Vol. 31, Issue 10, pp. 1551-1558 (2013)


View Full Text Article

Acrobat PDF (1580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

© 2013 IEEE

Citation
Carlos A. F. Marques, Lúcia Bilro, Lutful Kahn, Roberson A. Oliveira, David J. Webb, and Rogério N. Nogueira, "Acousto-Optic Effect in Microstructured Polymer Fiber Bragg Gratings: Simulation and Experimental Overview," J. Lightwave Technol. 31, 1551-1558 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-10-1551


Sort:  Year  |  Journal  |  Reset

References

  1. H. Yang, S. C. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, A. M. J. Koonen, "47.4 Gb/s transmission over 100 m graded-index POF based on rate-adaptive discrete multitone modulation," J. Lightw. Technol. 28, 352-359 (2010).
  2. Y. Shao, R. Cao, Y.-K. Huang, P. N. Ji, S. Zhang, "112-Gb/s transmission over 100 m of graded-index POF for optical data center applications," Proc. OFC (2012).
  3. W. Yuan, A. Stefani, O. Bang, "Tunable polymer fiber Bragg grating inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors," Photon. Technol. Lett. 24, 401 (2012).
  4. W. Zhang, D. J. Webb, G.-D. Peng, "Investigation into time response of polymer fiber Bragg grating based humidity sensors," J. Lightw. Technol. 30, 1090-1096 (2012).
  5. S. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, K. M. Luk, "Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region," Opt. Exp. 20, 9564 (2012).
  6. Y. Koike, M. Asai, "The future of plastic optical fiber," NPG Asia Mat. 1, 22 (2009).
  7. H. Dobb, D. J. Webb, "Continuous wave ultraviolet light induced fiber Bragg gratings in few and single-mode microstructured polymer optical fibers," Opt. Lett. 30, 3296 (2005).
  8. C. A. F. Marques, R. A. Oliveira, J. Canning, A. Pohl, R. N. Nogueira, "Control of the properties of fiber Bragg gratings based on the acousto-optic effect," Proc. ECOC (2010).
  9. G. Fernandes, M. Niehus, C. A. F. Marques, R. N. Nogueira, A. N. Pinto, "Acousto-optic tunable mode coupler," Proc. OFC (2012).
  10. C. A. F. Marques, R. A. Oliveira, A. Pohl, R. N. Nogueira, "Tunable acoustic bursts for customized tapered fiber Bragg structures," J. Opt. Soc. Amer. B 29, 3367-3370 (2012).
  11. C. A. F. Marques, R. A. Oliveira, A. Pohl, R. N. Nogueira, "Adjustable EDFA gain equalization filter for DWDM channels based on a single LPG excited by flexural acoustic waves," Opt. Comm. 285, 3770 (2012).
  12. T. J. R. Hughes, The Finite Element Method—Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, 1987).
  13. O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, 2000).
  14. H. Kogelnik, Theory of Optical Waveguides, in Guided-Wave Optoelectronics (Springer-Verlag, 1990).
  15. K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).
  16. B. Hassan, E. Hinton, "A review of homogenization and topology optimization I-homogenization theory for media with periodic structure," Comput. Struct. 69, 707 (1998).
  17. V. V. Vasiliev, E. V. Morozov, Mechanics and Analysis of Composite Materials (Elsevier, 2001).
  18. R. A. Oliveira, P. T. Neves, Jr.J. T. Pereira, A. Pohl, "Analysis of mechanical properties of a photonic crystal FBG acousto-optic modulator," Proc. AIP Conf. (2008) pp. 117.
  19. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325 (2004).
  20. I. Johnson, D. J. Webb, K. Kalli, M. E. C. J. Large, A. Argyros, "Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre," Proc. SPIE (2010).
  21. R. A. Oliveira, P. T. Neves, Jr.J. T. Pereira, A. A. P. Pohl, "Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods," Opt. Commuun. 281, 4899 (2008).
  22. R. A. Oliveira, P. T. Neves, Jr.J. T. Pereira, J. Canning, A. A. P. Pohl, "Vibration mode analysis of a silica horn-fiber Bragg grating device," Opt. Commun. 283, 1296 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited