OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1687–1693

Performance of High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects Under Air Turbulence

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1687-1693 (2013)

View Full Text Article

Acrobat PDF (783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Free-space based optical interconnects are promising candidates for the prevision of parallel, high-speed, densely integrated and reconfigurable card-to-card interconnectivities in data centers and for high-performance computing clusters. However, air turbulence due to high temperature of electronic components and heat dissipation fans typically results in degradation of system performance through effects such as signal scintillation, beam broadening and beam wander. In this paper, the impact of air turbulence on our recently proposed reconfigurable free-space card-to-card optical interconnect scheme is investigated. Experiments are carried out with lab-emulated moderate and comparatively strong turbulence and results show that the bit-error-rate (BER) performance of proposed interconnect scheme is degraded. A power penalty of ~0.5 dB is observed at BER of 10<sup>-9</sup> in emulated moderate turbulence, and in emulated comparatively strong turbulence the BER performance suffers power penalties of ~1.6 dB. It should be noted that a BER of 10<sup>-9</sup> is not sufficient for typical card-to-card optical interconnects and FEC should be employed to improve the BER performance at the cost of some overhead. Nevertheless, experimental results show that our proposed 3 × 3 10 Gb/s reconfigurable optical interconnects with card-to-card spacing of up to 30 cm is still achieved even under considerably strong turbulence.

© 2013 IEEE

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh, "Performance of High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects Under Air Turbulence," J. Lightwave Technol. 31, 1687-1693 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Borkar, "Design perspectives on 22 nm CMOS and beyond," Proc. 46th ACM/IEEE Design Automation Conf. (2009) pp. 93-94.
  2. S. E. Thompson, S. Parthasarathy, "Moore's law: The future of Si microelectronics," Materials Today 9, 20-25 (2006).
  3. B. Razavi, "A 300-GHz fundamental oscillator in 65-nm CMOS technology," IEEE J. Solid-State Circuits 46, 894-903 (2011).
  4. X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, K. Rim, "Transistor mismatch properties in deep-submicrometer CMOS technologies," IEEE Trans. Electron Devices 58, 335-342 (2011).
  5. A. Tomkins, R. A. Aroca, T. Yamamoto, S. T. Nicolson, Y. Doi, S. P. Voinigescu, "A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link," IEEE J. Solid-State Circuits 44, 2085-2099 (2009).
  6. R. Kalla, B. Sinharoy, W. J. Starke, M. Floyd, "Power 7: IBM's next-generation server processor," IEEE Micro 30, 7-15 (2010).
  7. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, "CMOS-integrated optical receivers for on-chip interconnects," IEEE J. Sel. Topics Quantum Electron. 16, 1376-1385 (2010).
  8. D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, L. Grenouillet, "Nanophotonic devices for optical interconnect," IEEE J. Sel. Topics Quantum Electron. 16, 1363-1375 (2010).
  9. L. Tsybeskov, D. J. Lockwood, M. Ichikawa, "Silicon photonics: CMOS going optical," Proc. IEEE 97, 1161-1165 (2009).
  10. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, M. B. Ritther, "Exploitation of optical interconnects in future server architectures," IBM J. Res. Develop. 49, 755-775 (2005).
  11. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, B. J. Offrein, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).
  12. C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, J. A. Kash, "A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates," J. Lightw. Technol. 27, 915-929 (2009).
  13. L. A. Buckman-Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, D. W. Dolfi, "Parallel optical interconnects > 100 Gb/s," J. Lightw. Technol. 22, 2055-2063 (2004).
  14. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schrödinger, A. Schild, H.-M. Rein, "120-Gb/s VCSEL-based parallel-optical interconnect and custom 120- Gb/s testing station," J. Lightw. Technol. 22, 2200-2212 (2004).
  15. F. E. Doany, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. Baks, C. Jahnes, F. Libsch, C. L. Schow, "Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC," Proc. OFC/NFOEC (2012) pp. PDP5D.9.
  16. C. J. Henderson, D. G. Leyva, T. D. Wilkinson, "Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM," J. Lightw. Technol. 24, 1989-1997 (2006).
  17. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," Proc. IEEE 88, 829-837 (2000).
  18. M. Aljada, K. E. Alameh, Y. T. Lee, I. S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Exp. 14, 6823-6836 (2006).
  19. I. Artundo, L. Desmet, W. Heirman, C. Debaes, J. Dambre, J. M. Van Campenhout, H. Thienpont, "Selective optical broadcast component for reconfigurable multiprocessor interconnects," IEEE J. Sel. Topics Quantum Electron. 12, 828-837 (2006).
  20. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, K. Alameh, "High-speed reconfigurable free-space card-to-card optical interconnects," IEEE Photon. J. 4, 1407-1419 (2012).
  21. R. Rachmani, A. Zilberman, S. Arnon, "Computer backplane with free space optical links: Air turbulence effects," J. Lightw. Technol. 30, 156-162 (2012).
  22. R. Rachmani, S. Arnon, "Server backplane with optical wavelength diversity links," J. Lightw. Technol. 30, 135-1365 (2012).
  23. L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE Optical Engineering Press, 1998).
  24. S. Bloom, E. Korevaar, J. Schuster, H. Willebrand, "Understanding the performance of free-space optics," J. Opt. Netw. 2, 178-200 (2003).
  25. H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, M. Uysal, "BER performance of FSO links over strong atmospheric turbulence channels with pointing errors," IEEE Commun. Lett. 12, 44-46 (2008).
  26. X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).
  27. Z. Wang, W.-D. Zhong, S. Fu, C. Lin, "Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique," IEEE Photon. J. 1, 277-285 (2009).
  28. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, K. Alameh, "Performance of reconfigurable free-space card-to-card optical interconnects under atmospheric turbulence," Proc. PGC (2012) pp. 1-5.
  29. M. J. Crippen, R. K. Alo, D. Champion, R. M. Clemo, C. M. Grosser, N. J. Gruendler, M. S. Mansuria, J. A. Matteson, M. S. Miller, B. A. Trumbo, "Blade center packaging, power and cooling," IBM J. Res. Dev. 49, 887-904 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited