OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1694–1702

Dispersion Properties of Three-Dimensional Plasma Photonic Crystals in Diamond Lattice Arrangement

Hai-Feng Zhang, Shao-Bin Liu, and Xiang-Kun Kong

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1694-1702 (2013)


View Full Text Article

Acrobat PDF (2414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Dispersion properties of two types of three-dimensional plasma photonic crystals are theoretically investigated by a modified plane wave expansion method, which is composed of isotropic dielectric and nomagnetized plasma. The eigenvalue equations of two types of structures depend on the diamond lattice realization (dielectric spheres inserted in plasma background or vice versa), are deduced respectively. The band structures can be obtained by solving the nonlinear eigenvalue equations. The influences of relative dielectric constant and plasma frequency with different filling factors on dispersive relation are demonstrated, respectively. The numerical results show that the band structures can be modulated by the parameters for the two types of plasma photonic crystals.

© 2013 IEEE

Citation
Hai-Feng Zhang, Shao-Bin Liu, and Xiang-Kun Kong, "Dispersion Properties of Three-Dimensional Plasma Photonic Crystals in Diamond Lattice Arrangement," J. Lightwave Technol. 31, 1694-1702 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-11-1694


Sort:  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, "Inhibited spontaneous emission of photons in solidstate physics and electronies," Phys. Rev. Lett. 58, 2059-2061 (1987).
  2. S. John, "Strong localization of photons in certain disorder ed dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
  3. K. M. Leung, Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett. 65, 2646-2649 (1990).
  4. Z. Zhang, S. Satpath, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett. 65, 2650-2653 (1990).
  5. E. Yablonovitch, T. J. Gmitter, "Photnic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
  6. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, "Photonic crystals: Putting a new twist on light," Nature 386, 143-149 (1997).
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector,," Science 282, 1679-1682 (1998).
  8. H. C. Hung, C. J. Wu, T. J. Yang, S. J. Chang, "Tunable multichannel filter in a photonic crystal containing semiconductor photonic quantum well," IEEE Photon. J. 4, 283-290 (2012).
  9. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
  10. H. Y. D. Yang, N. G. Alexopoulos, E. Yablonovitch, "Photonic bandgap materials for high-gain printed circuit antennas," IEEE Trans. Antennas Propag. 45, 185-187 (1997).
  11. J. K. Klos, M. L. Sokolovskyy, M. Krawczyk, "The impact of the lattice symmetry and the inclusion shape on the spectrum of 2-D magnonic crystals," J. Appl. Phys. 111, (2012) Art. ID 123910.
  12. M. Inoue, K. Arai, T. Fujii, M. Abe, "Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 83, (1998) Art. ID 6768.
  13. M. Inoue, K. Arai, T. Fujii, M. Abe, "One-dimensional magnetophotonic crystals," J. Appl. Phys. 85, (1999) Art. ID 6768.
  14. H. F. Zhang, M. Li, S. B. Liu, "Study of periodic bandgap structure of the magnetized plasma photonic crystals," Optoelectr. Lett. 5, 112-116 (2009).
  15. H. F. Zhang, M. Li, S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta. Phys. Sin. 58, 1071-1076 (2009).
  16. H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, Y. N. Guo, "Dispersion properties of two-dimensioanl plasma photonic crystals with periodically external magnetic field," Solid State Commun. 152, 1221-1229 (2012).
  17. H. Takeda, K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature supercomductors," Phys. Rev. B. 67, (2003) Art. ID 245109.
  18. H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, X. Zhao, "Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progr. Electromgan. Res. B 40, 415-431 (2012).
  19. W. H. Lin, C. J. Wu, T. J. Yang, S. J. Chang, "Terahertz mutichanneled filter in a superconducting photonic crystals," Opt. Exp. 18, 27155-27166 (2010).
  20. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B. 62, 15299-1530 (2000).
  21. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, R. W. Boyd, "Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals," Phys. Rev. Lett. 93, (2004) Art. ID 123902.
  22. D. F. Sievenpiper, E. Yablonovitch, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Phys. Rev. Lett. 80, 2829-2832 (1998).
  23. H. Hojo, A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," Plasma Fusion Res. 80, 89-90 (2004).
  24. L. Shiverhwari, "Zero permittivity band characteristics in one-dimensional plasma dielectric photonic crystals," Optic-Int. J. Light Electron Optic 122, 1523-1526 (2011).
  25. H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, B. R. Bian, "Enlarged omnidirectional photonic bandgap in heterostructure of plasma and dielectric photonic crystals," Opt. Int. J. Light Electron. Opt. .
  26. L. Qi, Z. Q. Yang, F. Lan, X. Gao, D. Z. Li, "Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystals," Chinese Phys. B 19, 034210-03410 (2010).
  27. L. Shiveshwari, P. Mahto, "Photonic bandgap effect in one-dimensional plasma dielectric photonic crystals," Solid State Commun. 138, 160-164 (2006).
  28. B. Guo, "Photonic bandgap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasma 16, (2009) Art. ID 043508.
  29. L. Qi, Z. Yang, F. Lan, X. Gao, Z. Shi, "Properties of obliquely incident electromagnetic wave in one-dimensional magnetzed plasma photonic crystals," Phys. Plasma. 17, (2010) Art. ID 042501.
  30. X. K. Kong, S. B. Liu, H. F. Zhang, C. Z. Li, "A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma," Phys. Plasma. 17, (2010) Art. ID 103506.
  31. H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasma 19, (2012) Art. ID 022103.
  32. S. P. Ojha, K. B. Thapa, S. K. Singh, "Superluminal propagation in plasma photonic bandgap materials," Op. Int. J. Light Electron Opt. 119, 81-85 (2008).
  33. L. Qi, "Photonic band structures of two-dimensional magnetized plasma photonic crystals," J. Appl. Phys. 111, (2012) Art. ID 073301.
  34. L. Qi, Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progr. Electromagn. Res. 91, 319-332 (2009).
  35. H. F. Zhang, X. K. Kong, S. B. Liu, "Analsys of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode," Acta Phys. Sin 60, (2011) 055209.
  36. H. F. Zhang, S. B. Liu, X. K. Kong, "Defect mode properties of two-dimensional unmagnetized plasma photonic crystals with line-defect under transverse magnetic mode," Acta Phys. Sin 60, (2011) Art. ID 025215.
  37. T. Natio, O. Sakai, K. Tachibana, "Experimental verification of complex dispersion relation in lossy photonic crystals," Appl. Phys. Exp. 1, (2008) Art. ID 066003.
  38. T. Sakaguchi, O. Sakai, K. Tachibana, "Photonic bands in two-dimensional mircoplasma array II. Band gaps observed in millimeter and sub-terahertz ranges," J. Appl. Phys. 101, (2007) Art. ID 073305.
  39. O. Sakai, T. Sakaguchi, K. Tachibana, "Photonic bands in two-dimensional mircoplasma array I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys. 101, (2007) Art. ID 073304.
  40. O. Sakai, Y. Kishimoto, K. Yachibana, "Integrated coaxial-hollow miro dielectric_barrier-discharges for a large-area plasma source operating at around atmospheric pressure," J. Phys. D: Appl. Phys 38, 431-441 (2005).
  41. Y. L. Li, Q. Z. Xue, C. H. Du, "Two-dimensional metallic photonic crystals with point defect analysis using modified finite-difference frequency-domain method,," J. Lightw. Technol. 28, 216-221 (2010).
  42. J. Yonekura, M. Ikeda, T. Baba, "Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method," J. Lightw. Technol. 17, 1500-1508 (1999).
  43. J. Yuan, Y. Y. Lu, "Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps," J. Lightw. Technol. 17, 3448-3453 (1999).
  44. Z. Li, L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, (2003) Art. ID 056702.
  45. P. Chiang, C. Yu, H. Chang, "Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method," Phys. Rev. E 75, (2003) Art. ID 026703.
  46. M. Lou, Q. H. Liu, "Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency," J. Opt. Soc. Amer. A 27, 1878-1884 (2010).
  47. M. Lou, Q. H. Liu, "Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method," J. Opt. Soc. Amer. A 26, 1598-1605 (2009).
  48. M. Lou, Q. H. Liu, Z. Li, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E 80, (2012) Art. ID 056702.
  49. V. Kuzmiak, A. A. Maradudin, "Photonic band structure of one-and two-dimensional periodic systems withmetallic components in the presence of dissipation," Phy. Rev. B 55, 7427-7444 (1997).
  50. H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, B. R. Bo, "Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)]," J. Appl. Phys. 110, (2011) Art. ID 026104.
  51. X. K. Kong, S. B. Liu, H. F. Zhang, L. Zhou, C. Z. Li, "Band structure calculations for two-dimensional plasma photonic crystals in honeycomb lattice arrangement," J. Lightw. Technol. 19, 2947-2953 (2011).
  52. S. Fan, P. R. Villrneuve, J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
  53. F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, H. T. Miyazaki, "Optal-like photonic crystal with diamond lattice," Appl. Phys. Lett. 15, 2309-2311 (2001).
  54. C. Kittel, Introduce to Soild State Physics (Wiley, 1996).
  55. V. L. Ginzburg, The Propagation of Electromagnetic Wave in Plasma (Pergamon, 1970).
  56. V. Kuzmiak, A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phy. Rev. B 58, 7230-7251 (1998).
  57. Z. Y. Li, J. Wang, B. Y. Gu, "Creation of partial gaps in anisotropic photonic-band-gap structures," Phy. Rev. B 58, 3721-3729 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited