OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1708–1712

Plasmonic Coupler for Silicon-Based Micro-Slabs to Plasominc Nano-Gap Waveguide Mode Coversion Enhancement

Y. Liu, Y. Lai, and K. Chang

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1708-1712 (2013)

View Full Text Article

Acrobat PDF (717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We investigate a short (~1.5 μm) “partially” corrugated tapered waveguide for silicon-based micro-slab waveguide to plasmonic nano-gap waveguide mode conversion at the optical communication frequency. The structure is designed to achieve more precise mode matching between the silicon slabs and plasmonic wave guides. High transmission efficiencies up to 87% ~ 98% have been demonstrated numerically. The results show that the corrugated structure should not only be helpful for realizing full on-chip silicon plasmonic devices but also a good choice for mode coupling enhancement from dielectric wave guides to plasmonic wave guides. Meanwhile, we point out that the coupling mechanism reported here is different from that achieved by exciting surface plasmon polaritions (SPPs) at metal surfaces reported in the literature [18],[19].

© 2013 IEEE

Y. Liu, Y. Lai, and K. Chang, "Plasmonic Coupler for Silicon-Based Micro-Slabs to Plasominc Nano-Gap Waveguide Mode Coversion Enhancement," J. Lightwave Technol. 31, 1708-1712 (2013)

Sort:  Year  |  Journal  |  Reset


  1. P. Ginzburg, D. Arbel, M. Orenstein, "Gap plasmon polariton structure for very efficient microscale to nanoscale interfacing," Opt. Lett. 31, 3228-3230 (2006).
  2. J. Wen, S. Romanov, U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Exp. 17, 5925-5932 (2009).
  3. G. Veronis, S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Exp. 15, 1211-1217 (2007).
  4. R. Yang, R. A. Wahsheh, Z. Lu, M. A. G. Abushagur, "Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide," Opt. Lett. 35, 649-651 (2010).
  5. G. L. James, "Analysis and design of TE11 -to- HE11 corrugated cylindrical waveguide mode converters," IEEE Trans. Microw. Theory Tech. 29, 1059-1066 (1981).
  6. R. E. Collin, Field Theory of Guided Waves .
  7. K. Zhang, D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2007).
  8. R. Levy, "Tapered corrugated waveguide low-pass filters," IEEE Trans. Microw. Theory Tech. 21, 526-532 (1973).
  9. Q. Gan, Z. Fu, Y. J. Ding, F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
  10. A. Brimont, J. Vicente Galán, J. Maria Escalante, J. Martí, P. Sanchis, "Group-index engineering in silicon corrugated waveguides," Opt. Lett. 35, 2708-2710 (2010).
  11. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, S. A. Maier, "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Sel. Topic Quantum Electron. 14, 1515-1521 (2008).
  12. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, S. A. Maier, "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Sel. Topic Quantum Electron. 14, 1515-1521 (2008).
  13. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett. 36, 4635-4637 (2011).
  14. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, P. Khanna Suraj, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Materials 9, 730-735 (2010).
  15. A. M. B. Al-Hariri, A. D. Olver, P. J. B. Clarricoats, "Low-attenuation properties of corrugated rectangular waveguide," Electron. Lett. 10, 304-305 (1974).
  16. M. Y. Chen, H. C. Chang, "Determination of surface plasmon modes and guided modes supported by periodic subwavelength slits on metals using a finite-difference frequency-domain method based eigenvalue algorithm," J. Lightw. Technol. 30, 76-83 (2012).
  17. G. H. Bryant, "Propagation in corrugated waveguides," Proc. Inst. Elect. Eng. 116, 203-213 (1969).
  18. R. Thomas, Z. Ikonic, R. Kelsall, "Silicon based plasmonic coupler," Opt. Exp. 20, 21520-21531 (2012).
  19. G. Y. Li, C. Lin, X. Feng, A. S. Xu, "Plasmonic corrugated horn structure for optical transmission enhancement," Chin. Phys. Lett. 26, 124205-12409 (2009).
  20. A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5263 (1998).
  21. A. Mohammadi, M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces," Opt. Express 14, 11330-11338 (2006).
  22. G. Kewes, A. W. Schell, R. Henze, R. S. Schonfeld, S. Burger, K. Busch, O. Benson, "Design and numerical optimization of an easy-to-fabricate photon-to-plasmon coupler for quantum plasmonics," Appl. Phys. Lett. 102, 051104 (2013).
  23. Y. Liu, K. Chang, “Nano-Optical Device Design With the Use of Open-Source Parallel Version FDTD and Commercial Finite Element Package,” arXiv: 1302.5489 (2013).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited