OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1720–1726

Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions

Muhammad Ijaz, Zabih Ghassemlooy, Jiri Pesek, Ondrej Fiser, Hoa Le Minh, and Edward Bentley

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1720-1726 (2013)


View Full Text Article

Acrobat PDF (1056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper theoretically and experimentally investigate the spectrum attenuation of free space optical (FSO) communication systems operating at visible and near infrared (NIR) wavelengths (0.6 μm < λ < 1.6 μm) under fog and smoke in a controlled laboratory condition. Fog and smoke are generated and controlled homogeneously along a dedicated atmospheric chamber of length 5.5 m. A new wavelength dependent empirical model is proposed to predict the fog and smoke attenuation operating at visible and NIR wavelengths. Comparison of the new proposed model with the measured continuous attenuation spectrum from visible—NIR in the fog and smoke channels shows a close relationship than the semi-empirical Kim and Kruse fog models. The experimental results also show the selection for the possible appropriate wavelengths from visible—NIR for FSO links to achieve the maximum link span in dense fog conditions.

© 2013 IEEE

Citation
Muhammad Ijaz, Zabih Ghassemlooy, Jiri Pesek, Ondrej Fiser, Hoa Le Minh, and Edward Bentley, "Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions," J. Lightwave Technol. 31, 1720-1726 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-11-1720


Sort:  Year  |  Journal  |  Reset

References

  1. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D'Errico, V. Guarino, "1.28 terabit/s (32 × 40 Gbit/s) WDM transmission system for free space optical communications," IEEE J. Sel. Areas Commun. 27, 1639-1645 (2009).
  2. V. Rajakumar, M. N. Smadi, S. C. Ghosh, T. D. Todd, S. Hranilovic, "Interference management in WLAN mesh networks using free-space optical links," J. Lightw. Technol. 26, 1735-1743 (2008).
  3. E. Leitgeb, M. Gebhart, U. Birnbacher, "Optical networks, last mile access and applications," J. Opt. Fiber Commun. Res. 2, 56-85 (2005).
  4. A. K. Majumdar, J. C. Ricklin, Springer Science (LLC, 2008) pp. 233.
  5. Z. Ghaseemlooy, W. O. Popoola, S. Rajbhandri, Optical Wireless Communications, System and Channel Modelling With Matlab (CRC Press, 2012).
  6. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. Lee-Minh, "Ethernet FSO communications link performance study under a controlled fog environment," IEEE Commun. Lett. 16, 1-3 (2012).
  7. B. R. Strickland, M. J. Lavan, E. Woodbridge, V. Chan, "Effects of fog on the bit error rate of a free space laser communication system," J. Appl. Opt. 38, 424-431 (1999).
  8. K. Su, L. Moeller, R. B. Barat, J. F. Federici, "Experimental comparison of performance degradation from terahertz and infrared wireless links in fog," J. Opt. Soc. Amer. A 29, 179-184 (2012).
  9. M. Ijaz, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, A. Gholami, "Bit error rate measurement of free space optical communication links under laboratory-controlled fog conditions," Proc. 16th Eur. Conf. Netw. Opt. Commun. (2011) pp. 52-550.
  10. C. P. Colvero, M. C. R. Cordeiro, J. P. Von der Weid, "Real-time measurements of visibility and transmission in far mid and near-IR free space optical links," Electron. Lett. 41, 610-611 (2005).
  11. S. S. Muhammad, B. Flecker, E. Leitgeb, M. Gebhart, "Characterization of fog attenuation in terrestrial free space links," J. Opt. Eng. 46, 066001-066006 (2007).
  12. M. S. Awan, L. C. Horwath, S. S. Muhammad, E. Leitgeb, F. Nadeem, M. S. Khan, "Characterization of fog and snow attenuations for free-space optical propagation," J. Commun. 4, 533-545 (2009).
  13. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, "Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition," J. Lightw. Technol. 30, 2188-2194 (2012).
  14. M. A. Naboulsi, F. D. Forne, H. Sizun, M. Gebhart, E. Leitgeb, S. S. Muhammad, "Measured and predicted light attenuation in dense coastal upslope Fog at 650, 850 and 950 nm for free space optics applications," J. Opt. Eng. 47, 036001-1-036001-14 (2008).
  15. K. W. Fischer, M. R. Witiw, E. Eisenberg, "Optical attenuation in fog at a wavelength of 1.55 micrometers," Atmospheric Res. 87, 252-258 (2008).
  16. I. I. Kim, B. McArthur, E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214 (2001).
  17. Z. N. J. Yang, C. Shi, D. Liu, Z. A. Li, "Microphysics of atmospheric aerosols during winter haze/fog events in nanjing," J. Environ. Sci. 31, 1425-1431 (2010).
  18. WMOGauide to Meteorological Instruments and Methods of Observation ITUGenevaSwetzerland (2006).
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. H. Weichel, "Laser beam propagation in the atmosphere," Bellingham: SPIE Optical Engineering TT3, 25-39 (1990).
  21. P. W. Kruse, L. D. McGlauchlin, E. B. McQuistan, Elements of Infrared Technology: Generation, Transmission and Detection (Wiley, 1962).
  22. M. Grabner, V. Kvicera, "The wavelength dependent model of extinction in fog and haze for free space optical communication," J. Opt. Exp. 19, 3379-3386 (2012).
  23. F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, G. Kandus, "Continental fog attenuation empirical relationship from measured visibility data," J. Radio Eng. 19, (2010).
  24. S. V. Kartalopoulos, Free Space Optical Networks for Ultra-Broad Band Services (Wiley, 2011) pp. 35-36.
  25. N. Blaunstein, S. Arnon, A. Zilberman, N. Kopeika, Applied Aspects of Optical Communication and LIDAR (CRC Press, 2010) pp. 53-55.
  26. M. Grabner, V. Kvicera, "Fog attenuation dependence on atmospheric visibility at two wavelengths for FSO link planning," Proc. Loughborough Antennas Propag. Conf. (2010) pp. 193-196.
  27. G. M. Hale, M. R. Querry, "Optical constants of water in the 200-nm to 200- μm wavelength region," J. Appl. Opt. 12, 555-563 (1973).
  28. J. K. J. Rheims, T. Wriedt, "Refractive-index measurements in the near-IR using an Abbe refractometer," J. Meas. Sci. Technol. 8, 601-605 (1997).
  29. R. M. Pierce, J. Ramaprasad, E. C. Eisenberg, "Optical attenuation in fog and clouds," Proc. SPIE 4530, 58-71 (2001).
  30. A. Prokes, "Atmospheric effects on availability of free space optics systems," J. Opt. Eng. 48, 066001-10 (2009).
  31. J. C. Ricklin, S. M. Hammel, F. D. Eaton, S. L. Lachinova, "Atmospheric channel effects on free-space laser communication," J. Opt. Fiber Commun. Res. 3, 111-158 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited