OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1821–1827

Low-Polarization-Dependent Silica Waveguide Monolithically Integrated on SOI Photonic Platform

Hidetaka Nishi, Tai Tsuchizawa, Hiroyuki Shinojima, Toshifumi Watanabe, Sei-Ichi Itabashi, Rai Kou, Hiroshi Fukuda, and Koji Yamada

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1821-1827 (2013)


View Full Text Article

Acrobat PDF (1202 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We developed a low-polarization-dependent silica- based waveguide, which can be monolithically integrated with a silicon (Si) waveguide device on a silicon-on-insulator (SOI) substrate. For the monolithic integration, silica-based materials must be deposited at low temperature in order not to damage Si waveguide devices. Due to this low-temperature fabrication method, however, the silica films exhibit high residual stress, resulting in high material birefringence. In order to compensate for this birefringence, we introduce a multi-layer core structure. First, we design the structure taking the monolithic integration with the Si waveguide devices into account. Then, the designed waveguides and arrayed-waveguide gratings (AWGs) are fabricated using low-temperature fabrication processes. Next, we experimentally confirm that the waveguide exhibits low waveguide birefringence. In addition, we monolithically integrate the AWG and Si waveguide devices.

© 2013 IEEE

Citation
Hidetaka Nishi, Tai Tsuchizawa, Hiroyuki Shinojima, Toshifumi Watanabe, Sei-Ichi Itabashi, Rai Kou, Hiroshi Fukuda, and Koji Yamada, "Low-Polarization-Dependent Silica Waveguide Monolithically Integrated on SOI Photonic Platform," J. Lightwave Technol. 31, 1821-1827 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-11-1821


Sort:  Year  |  Journal  |  Reset

References

  1. K. Sasaki, F. Ohno, A. Motegi, T. Baba, "Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801 (2005).
  2. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R. G. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE J. Sel. Quantum Electron. 12, 1394-1401 (2006).
  3. D. Feng, N.-N. Feng, C.-C. Kung, H. Liang, W. Qian, J. Fong, B. J. Luff, M. Asghari, "Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform," Opt. Exp. 19, 6125 (2011).
  4. C. R. Doerr, L. Chen, L. L. Buhl, Y. Chen, "Eight-channel SiO/Si N/Si/Ge CWDM receiver," IEEE Photon. Technol. Lett. 23, 1201-1203 (2011).
  5. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, S. Itabashi, "Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications," IEEE J. Sel. Top. Quantum. Electron. 17, 516-525 (2011).
  6. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, "Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver," Opt. Exp. 20, 9312-9321 (2012).
  7. R. Kou, H. Fukuda, T. Tsuchizawa, H. Nishi, T. Hiraki, K. Yamada, "Silicon/silica-hybrid delay line interferometer for DPSK demodulation," Proc. IEEE Group IV Photonics 2012 (GFP2012) (2012).
  8. R. Kasahara, M. Itoh, Y. Hida, T. Saida, Y. Inoue, Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178 (2002).
  9. M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," Opt. Quantum Electron. 22, 391-416 (1990).
  10. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, "Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules," IEEE J. Sel. Quantum Electron. 5, 1407-1412 (1999).
  11. S. Suzuki, S. Sumida, Y. Inoue, M. Ishii, Y. Ohmori, "Polarisation-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate," Electron. Lett. 33, 1173 (1997).
  12. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, P. V. Lambeck, "Design and application of compact and highly tolerant polarization-independent waveguides," Journal of Lightwave Technology 25, 1276-1283 (2007).
  13. H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, "Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film," IEEE Photon. Technol. Lett. 5, 707-709 (1993).
  14. K. Wörhoff, B. J. Offrein, P. V. Lambeck, G. L. Bona, A. Driessen, "Birefringence compensation applying double-core waveguiding structures," IEEE Photon. Technol. Lett. 11, 206-208 (1999).
  15. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000 (1980).
  16. A. S. Sudbo, "Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure Appl. Opt. 2, 211-233 (1993).
  17. (2012) “FIMMWAVE Version 5.4.1,” Photon Design.
  18. L. Chen, C. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, "Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon," IEEE Photon. Technol. Lett. 23, 869-871 (2011).
  19. D. Dai, Z. Wang, J. F. Bauters, M. Tien, M. J. R. Heck, J. Daniel, J. E. Bowers, "Low-loss Si3N4 arrayed-waveguide grating (de) multiplexer using nano-core optical waveguide," Opt. Exp. 19, 940-942 (2011).
  20. H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, T. Y. Kometani, "Refractive-index dispersion of phosphosilicate glass, thermal oxide, and silicon nitride films on silicon," Appl. Opt. 27, 4104 (1988).
  21. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, S. Itabashi, "Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure," Jpn. J. Appl. Phys. 49, 04DG20 (2010).
  22. S. Matsuo, M. Kiuchi, "Low temperature chemical vapor deposition method utilizing an electron cyclotron resonance plasma," Jpn. J. Appl. Phys. 22, L210-L212 (1983).
  23. S. Bae, D. G. Farber, S. J. Fonash, "Characteristics of low-temperature silicon nitride (SiNx:H) using electron cyclotron resonance plasma," Solid-State Electron. 44, 1355-1360 (2000).
  24. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, K. Rai, K. Yamada, S. Itabashi, "Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures," Appl. Phys. Exp. 3, 102203 (2010).
  25. G.-L. Bona, R. Germann, B. J. Offrein, "SiON high-refractive-index waveguide and planar lightwave circuits," IBM J. Res. Develop. 47, 239-249 (2003).
  26. T. Fuyuki, T. Saitoh, H. Matsunami, "Low-temperature deposition of hydrogen-free silicon oxynitride without stress by the remote plasma technique," Jpn. J. Appl. Phys. 2247-2250 (1990).
  27. O. Mitomi, K. Kasaya, H. Miyazawa, "Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling," IEEE J. Quantum Electron. 30, 1787-1793 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited