OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1835–1841

Flexible Polymer Waveguides With Integrated Mirrors Fabricated by Soft Lithography for Optical Interconnection

Guomin Jiang, Sarfaraz Baig, and Michael R. Wang

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1835-1841 (2013)


View Full Text Article

Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Flexible polymer waveguides with integrated 45° mirrors to support surface normal optical coupling for optical interconnection were fabricated using a vacuum assisted microfluidic (VAM) soft lithographic technique. Waveguide array structures with slanted surfaces of the SU-8 master were realized by prism-assisted inclined UV lithography. The internal surface reflected UV light was utilized to eliminate undercut structures and to form the inclined surfaces on both ends of the straight waveguide structure via one-step UV exposure. Varying the inclined surface depth can result in different needed light coupling efficiency. A polydimethylsiloxane (PDMS) mold was subsequently created. The use of UV curable resins in the VAM fabrication resulted in the polymer waveguides with 45° integrated mirrors, demonstrating a coupling efficiency of 75% for full mirrors and 38% for half mirrors.

© 2013 IEEE

Citation
Guomin Jiang, Sarfaraz Baig, and Michael R. Wang, "Flexible Polymer Waveguides With Integrated Mirrors Fabricated by Soft Lithography for Optical Interconnection," J. Lightwave Technol. 31, 1835-1841 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-11-1835


Sort:  Year  |  Journal  |  Reset

References

  1. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).
  2. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightw. Technol. 22, 2168-2176 (2004).
  3. L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, R. T. Chen, "45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects," Appl. Phys. Lett. 87, 141110 (2005).
  4. N. Bamiedakis, J. Beals, IVR. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects," IEEE J. Quantum Electron. 45, 415-424 (2009).
  5. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, R. T. Chen, "Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler," Opt. Exp. 21, 60-69 (2013).
  6. X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Polymeric waveguides with embedded micromirrors formed by Metallic Hard Mold," Opt. Exp. 18, 378-385 (2010).
  7. A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403 (2007).
  8. A. Flores, S. Song, J. J. Yang, Z. Liu, M. R. Wang, "High-speed optical interconnect coupler based on soft lithography ribbons," J. Lightw. Technol. 26, 1956-1963 (2008).
  9. M. Kagami, A. Kawasaki, H. Ito, "A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections," J. Lightw. Technol. 19, 1949-1955 (2001).
  10. X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Highly flexible polymeric optical waveguide for out-of-plane optical interconnects," Opt. Expr. 18, 16227-16223 (2010).
  11. X. Wang, W. Jiang, L. Wang, H. Bi, R. T. Chen, "Fully embedded board-level optical interconnects from waveguide fabrication to devices integration," J. Lightw. Technol. 26, 243-250 (2008).
  12. X. Dou, A. X. Wang, X. Lin, R. T. Chen, "Photolithography-free polymer optical waveguide arrays for optical backplane bus," Opt. Exp. 19, 14403-14410 (2011).
  13. M. Immonen, M. Karppinen, J. K. Kivilahti, "Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects," IEEE Trans. Electron. Packag. Manuf. 28, 304-311 (2005).
  14. W. Lee, S. H. Hwang, M. J. Kim, E. J. Jung, J. B. An, G. W. Kim, M. Y. Jeong, B. S. Rho, "Multilayered 3-D optical circuit with mirror-embedded waveguide film," IEEE Photon. Technol. Lett. 24, 1179-1181 (2012).
  15. W. Lee, S. H. Hwang, J. W. Lim, B. S. Rho, "Polymeric waveguide film with embedded mirror for multilayer optical circuits," IEEE Photon. Technol. Lett. 21, 12-14 (2009).
  16. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, K. Asama, "Three-Dimensional optical circuits consisting of waveguide films and optical Z-connections," J. Lightw. Technol. 24, 4345-4351 (2006).
  17. M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, S. Imamura, "Polymeric optical waveguides for optical interconnections," The Solid Films 331, 303-308 (1998).
  18. G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, P. Van Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightw. Technol. 22, 2083-2090 (2004).
  19. N. Hendrickx, J. V. Erps, E. Bosman, C. Debaes, H. Thienpont, P. V. Daele, "Embedded micromirror inserts for optical printed circuit boards," IEEE Photon. Technol. Lett. 20, 1727-1729 (2008).
  20. F. Wang, F. Liu, A. Adibi, "45 degree polymer micromirror integration for board-level three-dimensional optical interconnects," Opt. Express 17, 10514-10521 (2009).
  21. J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, S. Ura, "Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides," J. Lightw. Technol. 30, 1563-1568 (2012).
  22. M. Han, D. H. Hyun, H. H. Park, S. S. Lee, C. H. Kim, C. G. Kim, "A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer," J. Micromech. Microeng. 17, 1174-1191 (2007).
  23. K. Y. Hung, H. T. Hu, F. G. Tseng, "Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head," J. Micromech. Microeng. 14, 975-983 (2004).
  24. G. Jiang, S. Baig, M. R. Wang, "Prism-assisted inclined UV lithography for 3D microstructures fabrication," J. Micromech. Microeng. 22, 085022 (2012).
  25. A. Flores, S. Song, S. Baig, M. R. Wang, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," IEEE Photon. Technol. Lett. 20, 1246-1248 (2008).
  26. A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, E. Akutsu, "A novel fabrication technology of a polymer optical waveguide and its application," Proc. SPIE (2007) pp. 677506.
  27. S. J. Ahn, J. Moon, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," J. Am. Ceram. Soc. 88, 1171-1174 (2005).
  28. Y. Yoon, J. Park, M. G. Allen, "Multidirectional UV lithography for complex 3-D MEMS structures," J. Microelectromech. Syst. 15, 1121-1130 (2006).
  29. G. Jiang, S. Baig, M. R. Wang, "Soft lithography fabricated polymer waveguides and 45-degree inclined mirrors for card-to-backplane optical interconnects," Proc. SPIE (2012) pp. 82670R.
  30. U. Levy, R. Shamai, "Tunable optofluidic devices," Microfluid. Nanofluid 4, 97-105 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited