OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 13 — Jul. 1, 2013
  • pp: 2200–2206

Elimination of Aberrations Due to High-Order Terms in Systems Based on Linear Time Lenses

Bo Li and Shuqin Lou

Journal of Lightwave Technology, Vol. 31, Issue 13, pp. 2200-2206 (2013)

View Full Text Article

Acrobat PDF (1131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Signal-processing systems based on linear time lenses are realized by the combination of temporal quadratic phase modulation (which is a time lens) and group-velocity dispersion. In practice, these systems suffer from aberrations due to high-order phase-modulation terms in time lenses and aberrations due to high-order dispersion in dispersive elements. We find that these two kinds of aberrations can counterbalance each other under certain conditions. In this paper we theoretically derive and numerically confirm the aberration-elimination conditions for several time-lens based systems, i.e., temporal imaging, time-to-frequency mapping and frequency-to-time mapping of optical pulse waveforms. In addition, a frequency-time diagram is used to analyze the elimination process in order to illustrate the physical mechanism.

© 2013 IEEE

Bo Li and Shuqin Lou, "Elimination of Aberrations Due to High-Order Terms in Systems Based on Linear Time Lenses," J. Lightwave Technol. 31, 2200-2206 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, A. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. 4, 598-605 (1968).
  2. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).
  3. E. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
  4. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1936 (1994).
  5. M. Kauffman, W. Banyai, A. Godil, D. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
  6. M. Romagnoli, P. Franco, R. Corsini, A. Schiffini, M. Midrio, "Time-domain Fourier optics for polarization-mode dispersion compensation," Opt. Lett. 24, 1197-1199 (1999).
  7. C. Bennett, R. Scott, B. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
  8. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
  9. M. Nakazawa, T. Hirooka, F. Futami, S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16, 1059-1061 (2004).
  10. J. van Howe, J. Hansryd, C. Xu, "Multiwavelength pulse generator using time-lens compression," Opt. Lett. 29, 1470-1472 (2004).
  11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner, "Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms," Opt. Lett. 35, 3234-3236 (2010).
  12. L. E. Munioz-Camuniez, V. Torres-Company, J. Lancis, J. Ojeda-Castaneda, P. Andres, "Electro-optic time lens with an extended time aperture," J. Opt. Soc. Amer. B 27, 2110-2115 (2010).
  13. H. Hu, J. L. Areal, E. Palushani, L. K. Oxenlowe, A. Clausen, M. S. Berger, P. Jeppesen, "Optical synchronization of a 10-G ethernet packet and time-division multiplexing to a 50-Gb/s signal using an optical time lens," IEEE Photon. Technol. Lett. 22, 1583-1585 (2010).
  14. A. W. Lohmann, D. Mendlovic, "Temporal filtering with time lenses," Appl. Opt. 31, 6212-6219 (1992).
  15. A. Godil, B. Auld, D. Bloom, "Time-lens producing 1.9 ps optical pulses," Appl. Phys. Lett. 62, 1047-1049 (1993).
  16. M. T. Kauffman, A. A. Godil, B. A. Auld, W. C. Banyai, D. M. Bloom, "Applications of time lens optical systems," Electron. Lett. 14, 268-269 (1993).
  17. V. B. Yurchenko, "Improving the accuracy of a time lens," J. Opt. Soc. Am. B 14, 2921-2924 (1997).
  18. C. V. Bennett, B. H. Kolner, "Aberrations in temporal imaging," IEEE J. Quantum Electron. 37, 20-32 (2001).
  19. J. Schroder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, B. J. Eggleton, "Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens," Opt. Commun. 283, 2611-2614 (2010).
  20. A. Pasquazi, Y. Y. Park, S. T. Chu, B. E. Little, F. Légaré, R. Morandotti, J. Azaña, D. J. Moss, "Time-lens measurement of subpicosecond optical pulses in CMOS compatible high-index glass waveguides," IEEE J. Sel. Top. Quantum Eletrcon. 18, 629-636 (2012).
  21. M. D. Pelusi, Y. Matsui, A. Suzuki, "Electrooptic phase modulation of stretched 250-fs pulses for suppression of third-order fiber dispersion in transmission," IEEE Photon. Technol. Lett. 11, 1461-1463 (1999).
  22. J. Azana, M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
  23. G. Deng, W. Pan, X. H. Zou, "Optical pulse compression using the combination of phase modulation and high-order dispersion compensation," Opt. Rev. 17, 454-458 (2010).
  24. P. Naulleau, E. Leith, "Stretch, time lenses, and incoherent time imaging," Appl. Opt. 34, 4119-4128 (1995).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited