OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 13 — Jul. 1, 2013
  • pp: 2244–2253

An Integrated 40 Gbit/s Optical Costas Receiver

Mingzhi Lu, Hyun-chul Park, Eli Bloch, Abirami Sivananthan, John S. Parker, Zach Griffith, Leif A. Johansson, Mark J. W. Rodwell, and Larry A. Coldren

Journal of Lightwave Technology, Vol. 31, Issue 13, pp. 2244-2253 (2013)


View Full Text Article

Acrobat PDF (2078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, a highly-integrated widely-tunable optical homodyne receiver is reported with 40 Gbaud/s data rate. By using photonic and electronic integration, the receiver is realized within a size of 10×10 mm2, and the system is very robust and resistive to environmental changes. An integrated photonic coherent receiver circuit is demonstrated with 35 GHz photodetector bandwidth, and the integrated local oscillator (LO) laser covers a 40 nm range. The electronic IC (EIC) has a working frequency up to 50 GHz. The feedback loop is carefully analyzed and designed, and the experimental results show > 1.1 GHz loop bandwidth, which matches the design. The hold-in range is measured to be > 15 GHz. The phase noise of the transmitting laser has been cloned to the LO laser quite well, and both the linewidth measurement and phase noise measurement show no observable cross talk between binary phase shift keying (BPSK) data and the optical phase-locked loop (OPLL). Error free (bit error rate < 10-12) is achieved up to 35 Gbit/s. The system consumes 3 Watts of power.

© 2013 IEEE

Citation
Mingzhi Lu, Hyun-chul Park, Eli Bloch, Abirami Sivananthan, John S. Parker, Zach Griffith, Leif A. Johansson, Mark J. W. Rodwell, and Larry A. Coldren, "An Integrated 40 Gbit/s Optical Costas Receiver," J. Lightwave Technol. 31, 2244-2253 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-13-2244


Sort:  Year  |  Journal  |  Reset

References

  1. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).
  2. T. Omiya, K. Toyoda, M. Yoshida, M. Nakazawa, "400 Gbit/s Frequency-Division-Multiplexed and Polarization-Multiplexed 256 QAM-OFDM transmission over 400 km with a spectral efficiency of 14 bit/s/Hz," Proc. Opt. Fiber Commun. Conf. (2012).
  3. D. Welch, "The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems," J. Lightw. Technol. 24, 4674-4683 (2006).
  4. K. Kikuchi, High Spectral Density Optical Communication Technologies (Springer, 2010) pp. 11-49.
  5. L. Kazovsky, G. Kalogerakis, W. Shaw, "Homodyne phase-shift-keying systems: Past challenges and future opportunities," J. Lightw. Technol. 24, 4876-4884 (2006).
  6. M. Fice, A. Chiuchiarelli, E. Ciaramella, A. Seeds, "Homodyne coherent optical receiver using an optical injection phase-lock loop," J. Lightw. Technol. 29, 1152-1164 (2011).
  7. L. Kazovsky, "Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements," J. Lightw. Technol. 3, 1238-1247 (1985).
  8. T. Hodgkinson, "Costas loop analysis for coherent optical receivers," Electron. Lett. 22, 394-396 (1986).
  9. S. Norimatsu, K. Iwashita, "PLL propagation delay-time influence on linewidth requirements of optical PSK homodyne detection," J. Lightw. Technol. 9, 1367-1375 (1991).
  10. T. Sakamoto, A. Chiba, A. Kanno, I. Morohashi, T. Kawanishi, "Real-time homodyne reception of 40-Gb/s BPSK signal by digital optical phase-locked loop," Proc. ECOC (2010) pp. 1-3.
  11. H. Park, M. Lu, E. Bloch, T. Reed, Z. Griffith, L. Johansson, L. Coldren, M. Rodwell, "40 Gbit/s coherent optical receiver using a Costas loop," Opt. Exp. 20, B197-B203 (2012).
  12. E. Ip, J. Kahn, "Carrier synchronization for 3-and 4-bit-per-symbol optical transmission," J. Lightw. Technol. 23, 4110-4124 (2005).
  13. T. Koch, U. Koren, R. Gnall, F. Choa, F. Hernandez-Gil, C. Burrus, M. Young, M. Oron, B. Miller, "GaInAs/GaInAsP multiple-quantum-well integrated heterodyne receiver," Electron. Lett. 25, 1621-1623 (1989).
  14. L. Kazovsky, "Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements," J. Lightw. Technol. 4, 182-195 (1986).
  15. S. Norimatsu, K. Iwashita, K. Sato, "PSK optical homodyne detection using external cavity laser diodes in Costas loop," IEEE Photon. Technol. Lett. 2, 374-376 (1990).
  16. M. Grant, W. Michie, M. Fletcher, "The performance of optical phase-locked loops in the presence of nonnegligible loop propagation delay," J. Lightw. Technol. 5, 592-597 (1987).
  17. U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  18. H. Park, M. Lu, E. Bloch, T. Reed, Z. Griffith, L. Johansson, L. Coldren, M. Rodwell, "40 Gbit/s coherent optical receiver using a costas loop," Proc. ECOC (2012).
  19. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, L. Johansson, "An optical phase-locked loop photonic integrated circuit," J. Lightw. Technol. 28, 526-538 (2010).
  20. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. Johansson, M. Rodwell, L. Coldren, "Highly integrated optical heterodyne phase-locked loop with phase/frequency detection," Opt. Exp. 20, 9736-9741 (2012).
  21. R. Steed, "Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector," Opt. Exp. 19, 20 048-20 053 (2011).
  22. M. Lu, H. Park, E. Bloch, A. Sivananthan, J. Parker, Z. Griffith, L. Johansson, M. Rodwell, L. Coldren, "A photonic integrated circuit for a 40 Gbaud/s homodyne receiver using an optical Costas loop," Proc. IEEE Photon. Conf. (2012).
  23. M. Lu, H.-C. Park, A. Sivananthan, J. Parker, E. Bloch, L. Johansson, M. Rodwell, L. Coldren, "Monolithic integration of a high-speed widely tunable optical coherent receiver," IEEE Photon. Technol. Lett. 25, 1077-1080 (2013).
  24. E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, M. Rodwell, "A 1–20 GHz InP HBT phase-lock-loop IC for optical wavelength synthesis," Proc. MTT (2012) pp. 1-3.
  25. E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. Rodwell, "A 1–20 GHz all-digital InP HBT optical wavelength synthesis IC," IEEE Trans. Microw. Theory Tech. PP, 1-11 (2012).
  26. D. Messerschmitt, "Frequency detectors for PLL acquisition in timing and carrier recovery," IEEE Trans. Commun. 27, 1288-1295 (1979).
  27. F. M. Gardner, Phaselock Techniques (Wiley-Interscience, 2005).
  28. L. A. Coldren, L. A. Johansson, M. Lu, H. c. Park, J. Parker, A. Sivananthan, M. Rodwell, "Single-chip integrated transmitters and receivers," Opt. Exp. 20, B377-B385 (2012).
  29. P. Corrc, O. Girad, J. I. F. De Faria, "On the thermal contribution to the FM response of DFB lasers: Theory and experiment," IEEE J. Quantum Electron. 30, 2485-2490 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited