OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 13 — Jul. 1, 2013
  • pp: 2254–2262

Optimization of Photodiode Bandwidth Employing Peak Distortion Analysis

Jung Han Choi and Heinz-Gunter Bach

Journal of Lightwave Technology, Vol. 31, Issue 13, pp. 2254-2262 (2013)

View Full Text Article

Acrobat PDF (1542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper addresses the systematic approach to optimize series inductance in the inductively peaked pin photodiode for high speed operation beyond 100 Gb/s. For this end, peak distortion analysis is introduced in addition to group delay dispersion technique. Through analytical analysis and comprehensive numerical simulations, inductance values are calculated to optimize vertical eye-opening and signal-to-noise ratio. For verification, an optical waveguide integrated pin photodiode with optimized inductance is fabricated and measured. Using the optical pulse measurement setup, its pulse response is measured, and a full-width at half maximum of 7.34 ps is obtained. The fabricated module is tested using 107 Gb/s return-to-zero signal and shows excellent eye-opening.

© 2013 EU

Jung Han Choi and Heinz-Gunter Bach, "Optimization of Photodiode Bandwidth Employing Peak Distortion Analysis," J. Lightwave Technol. 31, 2254-2262 (2013)

Sort:  Year  |  Journal  |  Reset


  1. P. Pepeljugoski, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Ritter, J. Kash, "Data center and high performance computing interconnects for 100 Gb/s and beyond," Proc. OFC/NFOEC (2007).
  2. R. Rabinovich, "40 Gb/s and 100 Gb/s ethernet short-reach optical and copper host board channel design," IEEE Commun. Mag. 50, 129-133 (2012).
  3. L. Huff, "State of the short-reach optics market," Proc. OFC/NFOEC (2011) (2011).
  4. A. Vahdat, H. Liu, X. Zhao, C. Johnson, "The emerging optical data center," Proc. OFC/NFOEC (2011).
  5. D. Coleman, “Optical Trends in the Data Center,” http://www.bicsi.org/uploadedfiles/BICSI_Conferences/Canada/2012/presentations.
  6. http://www.ist-gibon.eu.
  7. K. Kato, "Ultrawide-band/high-frequency photodetectors," IEEE Trans. Microw. Theory Tech. 47, 1265-1281 (1999).
  8. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes," IEEE Trans. Sel. Topics Quantum Electron. 10, 709-727 (2004).
  9. Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, "110-GHz GaInAs/InP double heterostructure p-i-n photodetectors," J. Lightw. Technol. 13, 1490-1499 (1995).
  10. L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, A. Y. Cho, "Velocity-matched distributed photodetectors with highsaturation power and large bandwidth," IEEE Photon. Technol. Lett. 8, 1376-1378 (1996).
  11. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, "High-efficiency unitraveling-carrier photodiode with an integrated total-reflection mirror," J. Lightwave Technol. 18, 384-387 (2000).
  12. K. Kato, K. Kawano, A. Kozen, "Design of ultrawide-band, highsensitivity p-i-n photodetectors," IEICE Trans. Electron. E76-C, 214-221 (1993).
  13. A. Beling, Periodic Travelling Wave Photodetectors with Serial and Parallel Optical Feed Based on InP Dissertation Dept. Electrotechnique and Information Technical University of BerlinBerlinGermany (2006).
  14. R. Lewén, U. Westergren, E. Berglind, "Design of inductive p-i-n diode matching for optical receivers with increased bit-rate operation," J. Lightw. Technol. 19, 1956-1963 (2001).
  15. J. G. Proakis, Digital Communications (McGraw-Hill, 1995).
  16. H.-G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, W. Schlaak, "InP-based waveguide-integrated photodetector with 100-GHz bandwidth," IEEE Trans. Sel. Topics Quantum Electron. 10, 668-672 (2004).
  17. B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, 2002).
  18. C. Knochenhauer, B. Sedighi, F. Ellinger, "A comparative analysis of peaking methods for output stages of broadband amplifiers," IEEE Trans. Circuits Syst. I, Reg. Papers 58, 2581-2589 (2011).
  19. J. S. Walling, S. Shekhar, D. J. Allstot, "Wideband CMOS amplifier design: Time-domain considerations," IEEE Trans. Circuits Syst. I, Reg. Papers 55, 1781-1793 (2008).
  20. J. Youn, H. Kang, M. Lee, K. Park, W. Choi, "High-speed CMOS integrated optical receiver with an avalanche photodetector," IEEE Photon. Technol. Lett. 21, 1553-1556 (2009).
  21. Matlab Manual on Communication System Toolbox http://www.mathworks.de/de/help/comm/ref/commscope.eyediagram.html#brkinm8.
  22. A. Muranyi, "Statistical eye analysis implemented in VHDL-AMS," Proc. 2007 IEEE Int. Behavioral Modeling Simulation Conf. (2007) pp. 64-66.
  23. B. Casper, Peak Distortion ISI Analysis Circuits Research Lab, Intel Corporation (2003) http://download.intel.com/education/highered/signal/ELCT865/Class2_15_16_Peak_Distortion_Analysis.ppt.
  24. H.-G. Bach, Monolithically Integrated Optoelectronic Subassembly U.S. Patent 2009/0202197 A1 (2009).
  25. A. Beling, "InP-based 1.55 μm waveguide-integrated photodetectors for high-speed applications," Proc. SPIE's Int. Symp. Integrated Optoelectronic Devices 2006 (2006) pp. 156-167.
  26. J. Berger, A. Le, A. Wietfeld, S. Ferber, L. Gruener-Nielsen, B. Schmauss, H. G. Weber, "160 Gbit/s transmission over dispersion managed fibre set," Proc. ECOC (2003) pp. 56-57.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited