OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 14 — Jul. 15, 2013
  • pp: 2287–2295

Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization

David S. Wu, Radan Slavík, Giuseppe Marra, and David J. Richardson

Journal of Lightwave Technology, Vol. 31, Issue 14, pp. 2287-2295 (2013)

View Full Text Article

Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Many applications of optical frequency combs (OFCs) require manipulation and amplification of individual comb modes, e.g., arbitrary waveform generation, terahertz generation and telecommunications. Extracting individual comb modes can be a challenging task for OFCs with narrow comb mode spacings (100 MHz to 10 GHz) due to the limitations of conventional optical filters. Optical injection locking can address this problem, but—due to the relatively large bandwidth (1 to 10 GHz) required for simple (i.e., without the need for additional feedback loops) and stable locking—can struggle when processing OFCs with sub-GHz comb mode spacings. Here, we present an approach to optical injection locking which incorporates a dither-free phase locked loop that allowed for long-term locking to OFCs with comb spacings below the high power injection locking bandwidth. As a result, we achieved robust injection locking directly to a sub-GHz OFC (250 MHz in our experiments). Optimization of the optical injection power is carried out using detailed phase noise characterization. We achieved an Allan deviation for the frequency variation of the slave laser with respect to the injected comb mode (1 s gate time) down to 9.7 × 10-17 and 4.4 × 10-19 at 1 s and 1000 s averaging times respectively, and a phase error variance of 0.02 rad2 (integration bandwidth of 100 Hz to 500 MHz).

© 2013 IEEE

David S. Wu, Radan Slavík, Giuseppe Marra, and David J. Richardson, "Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization," J. Lightwave Technol. 31, 2287-2295 (2013)

Sort:  Year  |  Journal  |  Reset


  1. J. Ye, H. Schnatz, L. W. Hollberg, "Optical frequency combs: From frequency metrology to optical phase control," IEEE J. Sel. Topics Quantum Electron. 9, 1041-1058 (2003).
  2. L. S. Ma, "Optical frequency synthesis and comparison with uncertainty at the 10(-19) level," Science 303, 1843-1845 (2004).
  3. L. S. Ma, "International comparisons of femtosecond laser frequency combs," IEEE Trans. Instrum. Meas. 54, 746-749 (2005).
  4. T. Udem, R. Holzwarth, T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
  5. G. K. Campbell, "The absolute frequency of the (87)Sr optical clock transition," Metrologia 45, 539-548 (2008).
  6. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, L. Hollberg, "High-resolution spectroscopy with a femtosecond laser frequency comb," Opt. Lett. 30, 1734-1736 (2005).
  7. H. R. Telle, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B-Lasers Opt. 69, 327-332 (1999).
  8. S. A. Diddams, "Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb," Opt. Exp. 17, 3331-3340 (2009).
  9. Y. J. Kim, Y. Kim, B. J. Chun, S. Hyun, S. W. Kim, "All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser," Opt. Exp. 17, 10939-10945 (2009).
  10. S. Ayotte, "Semiconductor laser white noise suppression by optical filtering with ultra-narrowband FBG," Proc. OFC/NFOEC 2011 (2011).
  11. Y. Xingwen, N. K. Fontaine, R. P. Scott, S. Yoo, "Tb/s coherent optical OFDM systems enabled by optical frequency combs," J. Lightw. Technol. 28, 2054-2061 (2010).
  12. A. D. Ellis, F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
  13. D. Hillerkuss, "26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nature Photon. 5, 364-371 (2011).
  14. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, "Radiofrequency signal-generation system with over seven octaves of continuous tuning," Nature Photon. 7, 118-122 (2013).
  15. S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode," Electronics Letters 37, 780-781 (2001).
  16. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  17. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990).
  18. N. K. Fontaine, "32 phase × 32 amplitude optical arbitrary waveform generation," Opt. Lett. 32, 865-867 (2007).
  19. Z. Jiang, C. B. Huang, D. E. Leaird, A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1, 463-467 (2007).
  20. R. Olshansky, "Noise figure for erbium-doped optical fibre amplifiers," Electron. Lett. 24, 1363-1365 (1988).
  21. A. E. Siegman, Lasers/Anthony E. Siegman (University Science Books, 1986).
  22. E. K. Lau, L. J. Wong, M. C. Wu, "Enhanced modulation characteristics of optical injection-locked lasers: A tutorial," IEEE J. Sel. Topics Quantum Electron. 15, 618-633 (2009).
  23. A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, "Colorless regenerative amplification of constant envelope phase-modulated optical signals based on injection-locked Fabry-Perot lasers," IEEE Photon. Technol. Lett. 24, 28-30 (2012).
  24. E. K. Lau, M. C. Wu, "Amplitude and frequency modulation of the master laser in injection-locked laser systems," Proc. IEEE MWP (2004) pp. 142-145.
  25. E. K. Lau, "Bandwidth enhancement by master modulation of optical injection-locked lasers," J. Lightw. Technol. 26, 2584-2593 (2008).
  26. S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," J. Lightw. Technol. 21, 3043-3051 (2003).
  27. M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, P. J. Delfyett, "Dynamic line-by-line pulse shaping with GHz update rate," Opt. Exp. 18, 18284-18291 (2010).
  28. N. Koda, S. Hohchido, K. Kashiwagi, Y. Tanaka, T. Kurokawa, "Channel selection by optical injection locking in frequency-comb based DWDM transmission," Proc. OECC (2012) pp. 831-832.
  29. H. S. Moon, E. B. Kim, S. E. Park, C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, (2006) 181110.
  30. S. E. Park, "Sweep optical frequency synthesizer with a distributed-Bragg-refiector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
  31. H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, H. S. Suh, "Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb," Opt. Exp. 16, 2867-2873 (2008).
  32. Y. Xingwen, S. William, M. Yiran, "Phase noise effects on high spectral efficiency coherent optical OFDM transmission," J. Lightw. Technol. 26, 1309-1316 (2008).
  33. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, H. Tanaka, "Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF," J. Lightw. Technol. 26, 6-15 (2008).
  34. Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
  35. S. H. Lee, H. Y. Ryu, W. K. Lee, Y. P. Kim, H. S. Suh, "Discretely tunable optical frequency synthesizer utilizing a femtosecond fiber laser injection-locking technique," IEEE Photon. Technol. Lett. 21, 1435-1437 (2009).
  36. D. S. Wu, R. Slavik, G. Marra, D. J. Richardson, "Robust optical injection locking to a 250 MHz frequency comb without narrow-band optical pre-filtering," Proc. CLEO (2011) pp. 273-275.
  37. D. S. Wu, R. Slavik, G. Marra, D. J. Richardson, "Phase noise characterization of injection locked semiconductor lasers to a 250 MHz optical frequency comb," Proc. CLEO (2012) pp. 1-2.
  38. D. S. Wu, R. Slavik, G. Marra, D. J. Richardson, "Phase noise and jitter characterization of pulses generated by optical injection locking to an optical frequency comb," Proc. Frontiers in Optics (FiO/LS XXVIII) (2012).
  39. F. Mogensen, H. Olesen, G. Jacobsen, "Locking conditions and stability properties for a semiconductor-laser with external light injection," IEEE J. Quantum Electron. 21, 784-793 (1985).
  40. R. C. Steele, "Optical phase-locked loop using semiconductor-laser diodes," Electron. Lett. 19, 69-71 (1983).
  41. R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds, A. Bordonalli, "Optical-injection locking and phase-lock loop combined systems," Opt. Lett. 19, 4-6 (1994).
  42. C. Walton, A. C. Bordonalli, A. J. Seeds, "High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 10, 427-429 (1998).
  43. A. C. Bordonalli, C. Walton, A. J. Seeds, "High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop," J. Lightw. Technol. 17, 328-342 (1999).
  44. B. Kelly, "Discrete mode laser diodes with very narrow linewidth emission," Electron. Lett. 43, 1282-1284 (2007).
  45. Z. Jiang, D. E. Leaird, A. M. Weiner, "Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser," IEEE J. Quantum Electron. 42, 657-666 (2006).
  46. L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).
  47. W. F. Walls, F. L. Walls, "Computation of time-domain frequency stability and jitter from PM noise measurements," Proc. MAPAN-Journal of Metrology Society of India 218-225 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited