OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 14 — Jul. 15, 2013
  • pp: 2426–2433

Joint Residual Stress/Refractive Index Characterization of Large-Mode-Area Erbium-Doped Fibers

Ting Feng, Micah H. Jenkins, Fengping Yan, and Thomas K. Gaylord

Journal of Lightwave Technology, Vol. 31, Issue 14, pp. 2426-2433 (2013)


View Full Text Article

Acrobat PDF (1184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The residual stress (RS) and refractive index (RI) distributions of large-mode-area (LMA) erbium-doped fibers (EDFs) are measured for the first time using a high-resolution three-dimensional index-stress distribution measurement method. The effects of fiber manufacturing, cleaving, and arc fusion splicing of a commercially available LMA EDF are concurrently characterized at state-of-the-art stress, index, and spatial resolutions. RS induced via fiber manufacturing results in RI changes as large as 1.2 × 10-4 RI units through the photo-elastic effect. The relaxation of RS within ~30μm of a cleaved end-face reverses the stress-induced RI changes formed during fiber manufacturing. After fusion splicing, an even larger stress-induced RI change of 3.5 × 10-4 RI units results over an axial distance on the order of millimeters. The diffusion of core dopants reduces the maximum core RI by as much as 21.7% along a transition region length of ~400μm. These measurements represent the first of many required to develop future ultra LMA EDFs where RS effects and dopant diffusion are absolutely critical for fiber design and performance.

© 2013 IEEE

Citation
Ting Feng, Micah H. Jenkins, Fengping Yan, and Thomas K. Gaylord, "Joint Residual Stress/Refractive Index Characterization of Large-Mode-Area Erbium-Doped Fibers," J. Lightwave Technol. 31, 2426-2433 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-14-2426


Sort:  Year  |  Journal  |  Reset

References

  1. X. He, X. Fang, C. Liao, D. Wang, J. Sun, "A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity," Opt. Exp. 17, 21773-21781 (2009).
  2. Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, W. Ren, "DFB laser based on single mode large effective area heavy concentration EDF," Opt. Exp. 20, 23684-23689 (2012).
  3. J. Zhang, J. W. Y. Lit, "Erbium-doped fiber compound-ring laser with a ring filter," IEEE Photon. Technol. Lett. 6, 588-590 (1994).
  4. S. K. Kim, G. Stewart, W. Johnstone, B. Culshaw, "Mode-hop-free single-longitudinal-mode erbium-doped fiber laser frequency scanned with a fiber ring resonator," Appl. Opt. 38, 5154-5157 (1999).
  5. T. Feng, F. Yan, Q. Li, W. Peng, S. Feng, S. Tan, X. Wen, "Stable single longitudinal mode erbium-doped silica fiber laser based on asymmetric linear three-cavity structure," Chin. Phys. B 22, 014208 (5 pp.) (2013).
  6. T. Feng, F. Yan, Q. Li, W. Peng, S. Tan, S. Feng, P. Liu, X. Wen, "A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser," Laser Phys. 23, 025101 (7 pp.) (2013).
  7. J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, W. Jiang, "Robust, compact, and flexible neural model for a fiber Raman amplifier," J. Lightw. Technol. 24, 2362-2367 (2006).
  8. M. Zhou, S. George, W. Gillian, "Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber," J. Lightw. Technol. 24, 2179-2183 (2006).
  9. M. Li, J. Ma, X. Zhang, Y. Song, W. Du, "Investigation of black box model for erbium-doped fiber amplifiers in space radiation environment," J. Lightw. Technol. 30, 3667-3671 (2012).
  10. T. Feng, F. Yan, Q. Li, W. Peng, S. Feng, X. Wen, P. Liu, S. Tan, "Stable and high OSNR compound linear-cavity single-longitudinal-mode erbium-doped silica fiber laser based on an asymmetric four-cavity structure," Chin. Phys. Lett. 29, 104205 (4 pp.) (2012).
  11. X. He, D. Wang, C. Liao, "Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers," J. Lightw. Technol. 29, 842-849 (2011).
  12. S. K. Varshney, K. Saitoh, M. Koshiba, B. P. Pal, R. Sinha, "Design of s-band erbium-doped concentric dual-core photonic crystal fiber amplifiers with ASE suppression," J. Lightw. Technol. 27, 1725-1733 (2009).
  13. J. J. Koponen, M. J. Soderlund, H. J. Hoffman, S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Exp. 14, 11539-11544 (2006).
  14. Y. Yan, R. Pitchumani, "Numerical study on the dopant concentration and refractive index profile evolution in an optical fiber manufacturing process," Int. J. Heat Mass Transfer 49, 2097-2112 (2006).
  15. K. Lyytikainen, S. T. Huntington, A. L. G. Carter, P. McNamara, S. Fleming, J. Abramczyk, I. Kaplin, G. Schotz, "Dopant diffusion during optical fibre drawing," Opt. Exp. 12, 972-977 (2004).
  16. H. Huang, R. M. Miura, J. J. Wylie, "Optical fiber drawing and dopant transport," SIAM J. Appl. Math. 69, 330-347 (2008).
  17. D. J. Wissuchek, C. W. Ponader, J. J. Price, "Analysis of residual stress in optical fiber," Proc. SPIE (1999) pp. 34-43.
  18. P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, "Stress in optical waveguides. 1: Preforms," Appl. Opt. 25, 1093-1098 (1986).
  19. P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, "Stress in optical waveguides. 2: Fibers," Appl. Opt. 26, 1175-1182 (1987).
  20. A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Topics Quantum Electron. 10, 300-311 (2004).
  21. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, D. Y. Kim, "Inelastic frozen-in stress in optical fibers," Opt. Commun. 242, 431-436 (2004).
  22. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, D. Y. Kim, "Residual stress relaxation in cleaved fibers," Opt. Commun. 281, 75-79 (2008).
  23. M. R. Hutsel, R. Ingle, T. K. Gaylord, "Accurate cross-sectional stress profiling of optical fibers," Appl. Opt. 48, 4985-4995 (2009).
  24. B. S. Wang, E. W. Mies, "Advanced topics on fusion splicing of specialty fibers and devices," Proc. Passive Components and Fiber-based Devices IV, Nov. 2, 2007 - Nov. 5, 2007 (2007) pp. 1-14.
  25. J. Luo, "Modeling dissimilar optical fiber splices with substantial diffusion," J. Lightw. Technol. 25, 3575-3579 (2007).
  26. W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, K. Oh, "Longitudinal distribution of stress along the splice between dissimilar optical fibers," Proc. OFC (2004) pp. 19-21.
  27. M. Young, "Optical fiber index profiles by the refracted-ray method (refracted near-field scanning)," Appl. Opt. 20, 3415-3422 (1981).
  28. M. Ikeda, M. Tateda, H. Yoshikiyo, "Refractive index profile of a graded index fiber: Measurement by a reflection method," Appl. Opt. 14, 814-815 (1975).
  29. P. L. Chu, T. Whitebread, "Measurement of stresses in optical fiber and preform," Appl. Opt. 21, 4241-4245 (1982).
  30. K. W. Raine, R. Feced, S. E. Kanellopoulos, V. A. Handerek, "Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers," Appl. Opt. 38, 1086-1095 (1999).
  31. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," Appl. Opt. 41, 21-26 (2002).
  32. C. C. Montarou, T. K. Gaylord, A. I. Dachevski, "Residual stress profiles in optical fibers determined by the two-waveplate-compensator method," Opt. Commun. 265, 29-32 (2006).
  33. N. M. Dragomir, X. M. Goh, A. Roberts, "Three-dimensional refractive index reconstruction with quantitative phase tomography," Micro. Res. Tech. 71, 5-10 (2008).
  34. M. R. Hutsel, T. K. Gaylord, "Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers," Appl. Opt. 51, 5442-5452 (2012).
  35. F. Just, H. R. Muller, S. Unger, J. Kirchhof, V. Reichel, H. Bartelt, "Ytterbium-doping related stresses in preforms for high-power fiber lasers," J. Lightw. Technol. 27, 2111-2116 (2009).
  36. O. Schmidt, J. Rothhardt, T. Eidam, F. Roser, J. Limpert, A. Tunnermann, K. P. Hansen, C. Jakobsen, J. Broeng, "Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber," Opt. Exp. 16, 3918-3923 (2008).
  37. Nufern (2012) http://www.nufern.com/pam/optical_fibers/910/LMA-YDF-30_250-HI-8/.
  38. M. R. Hutsel, R. R. Ingle, T. K. Gaylord, "Technique and apparatus for accurate cross-sectional stress profiling of optical fibers," IEEE T. Instrum. Meas. 60, 971-979 (2011).
  39. J. Peng, L. Liu, H. Wei, J. Sun, Z. Kang, S. Jian, "Theoretical analysis and experiment on a novel kind of single mode large-mode-area erbium-doped fiber," Mod. Phys. Lett. B 25, 1193-1202 (2011).
  40. A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag, 2005).
  41. J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, H. Ihalainen, "Progress in direct nanoparticle deposition for the development of the next generation fiber lasers," Opt. Eng. 50, 111605 (11 pp.) (2011).
  42. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  43. B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, W. T. Han, "Observation and analysis of residual stress development resulting from OH impurity in optical fibers," Opt. Lett. 27, 806-808 (2002).
  44. I. H. Shin, S. Ju, S. P. Veetil, W. T. Han, D. Y. Kim, "Simple model for frozen-in viscoelastic stress in optical fibers," Opt. Commun. 281, 2504-2508 (2008).
  45. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
  46. W. Primak, D. Post, "Photoelastic constants of vitreous silica and its elastic coefficient of refractive index," J. Appl. Phys. 30, 779-788 (1959).
  47. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).
  48. P. L. Chu, T. Whitbread, "Stress transformation due to fusion splicing in optical fiber," Electron. Lett. 20, 599-600 (1984).
  49. H. Y. Tam, "Simple fusion splicing technique for reducing splicing loss between standard singlemode fibers and erbium-doped fiber," Electron. Lett. 27, 1597-1599 (1991).
  50. D. Paganin, A. Barty, P. J. McMahon, K. A. Nugent, "Quantitative phase-amplitude microscopy. III. The effects of noise," J. Microsc. 214, 51-61 (2004).
  51. J. Yamauchi, Y. Akimoto, M. Nibe, H. Nakano, "Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM," IEEE Photon. Technol. Lett. 8, 236-238 (1996).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited