OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2459–2466

Titanium Nano-Antenna for High-Power Pulsed Operation

Evgeny G. Mironov, Ziyuan Li, Haroldo T. Hattori, Kaushal Vora, Hark Hoe Tan, and Chennupati Jagadish

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2459-2466 (2013)


View Full Text Article

Acrobat PDF (3687 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

While plasmonic nano-antennas can produce intense electric fields in a very small area, in general, these devices cannot handle high power, because of their small footprints. In order to increase the maximum peak power that these devices can withstand, they can be driven by nano-second pulses from a larger diameter Q-switched laser, which reduces the fluence reaching the devices, thus avoiding their destruction. Furthermore, we show that an increase in the power density capacity of the nano-antennas can be achieved by replacing gold with titanium: more than 18 dB greater power density can be handled by titanium based nano-antennas without significant reduction in their electric field enhancement capabilities.

© 2013 IEEE

Citation
Evgeny G. Mironov, Ziyuan Li, Haroldo T. Hattori, Kaushal Vora, Hark Hoe Tan, and Chennupati Jagadish, "Titanium Nano-Antenna for High-Power Pulsed Operation," J. Lightwave Technol. 31, 2459-2466 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-15-2459


Sort:  Year  |  Journal  |  Reset

References

  1. P. Bharadwaj, B. Deutsch, L. Novotny, "Optical antennas," Adv. Opt. Photon. 1, 438-483 (2009).
  2. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Exp. 15, 13272-13281 (2007).
  3. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Exp. 17, 20878-20884 (2009).
  4. T. Kosako, Y. Kadoya, H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon. 4, 312-315 (2010).
  5. T. H. Taminiau, F. D. Stefani, N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Opt. Exp. 16, 10858-10866 (2008).
  6. C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, F. Kneubühl, "Polarization response of asymmetric-spiral infrared antennas," Appl. Opt. 36, 6485-6490 (1997).
  7. J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, "Optical antennas for nano-photonic applications," Nanotechnology 16, S230-S234 (2005).
  8. F. González, G. Boreman, "Comparison of dipole, bowtie, spiral and log-period IR antennas," Infrared Phys. Technol. 146, 418-428 (2004).
  9. C. Middlebrook, P. Krenz, B. Lail, G. Boreman, "Infrared phased-array antenna," Microw. Opt. Technol. Lett. 50, 719-723 (2008).
  10. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys. 45, 1-5 (2012).
  11. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy," Nano Lett. 10, 2511-2518 (2010).
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3, 654-657 (2010).
  13. B. Lahiri, R. Dylewicz, R. M. De La Rue, N. P. Johnson, "Impact of titanium adhesion layers on the response of metallic split-ring resonators (SRRs)," Opt. Exp. 18, 11202-11208 (2010).
  14. M. E. Fermann, A. Galvanauskas, G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker, 2003) pp. 359-394.
  15. H. Sobral, M. Villagrán-Muniz, "Energy balance in laser ablation of metal targets," J. of Appl. Phys. 98, 083305 1-5- (2005).
  16. B. Kante, J.-M. Lourtioz, A. de Lustrac, "Infrared metafilms on a dielectric substrate," Phys. Rev. B 80, 205120 (2009).
  17. F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. de Lustrac, J.-M. Lourtioz, "Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon," Opt. Quantum Electron. 39, (2007).
  18. Fullwave 6.0 RSOFT Design Group (1999) http://www.rsoftdesign.com.
  19. Australian/New Zealand Standard AS/NZS 2211.1 2004- Safety of Laser Products.
  20. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
  21. S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, "How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopy study," Chem. Phys. Lett. 315, 12-18 (1999).
  22. COMSOL 4.0 Multiphysics (2012) http://www.comsol.com.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited