OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2467–2476

A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures

Konstantinos P. Prokopidis and Dimitrios C. Zografopoulos

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2467-2476 (2013)

View Full Text Article

Acrobat PDF (2264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.

© 2013 IEEE

Konstantinos P. Prokopidis and Dimitrios C. Zografopoulos, "A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures," J. Lightwave Technol. 31, 2467-2476 (2013)

Sort:  Year  |  Journal  |  Reset


  1. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 44-50 (2008).
  2. M. I. Stockman, "Nanoplasmonics: Past, present, and glimpse into future," Opt. Exp. 19, 22 029-22 106 (2011).
  3. E. Le Ru, P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).
  4. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4, 83-91 (2010).
  5. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  6. S. G. Rodrigo, Optical Properties of Nanostructured Metallic Systems (Springer, 2012).
  7. A. C. Tasolamprou, D. C. Zografopoulos, E. E. Kriezis, "Liquid crystal-based dielectric loaded surface plasmon polariton optical switches," J. Appl. Phys. 110, (2011) art. no. 093102.
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  9. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  10. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, (2005) art. no. 085416.
  11. K. P. Prokopidis, T. D. Tsiboukis, "Modeling of ground-penetrating radar for detecting buried objects in dispersive soils," Appl. Comput. Electron. 22, 287-294 (2007).
  12. A. Deinega, S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012).
  13. M. Han, R. Dutton, S. Fan, "Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs," IEEE Microw. Wireless Compon. Lett. 16, 119-121 (2006).
  14. P. G. Etchegoin, E. C, L. Ru, M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, (2006) art. no. 164705.
  15. A. Vial, "Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method," J. Opt. A: Pure Appl. Opt. 9, 745-748 (2007).
  16. A. Vial, T. Laroche, "Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method," J. Phys. D: Appl. Phys. 40, 7152-7158 (2007).
  17. A. Vial, T. Laroche, M. Dridi, L. Le Cunff, "A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method," Appl. Phys. A: Mater. 103, 849-853 (2011).
  18. F. Hao, P. Nordlander, "Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles," Chem. Phys. Lett. 446, 115-118 (2007).
  19. J. Lu, Y. Change, "Implementation of an efficient dielectric function into the finite difference time domain method for simulating the coupling between localized surface plasmons of nanostrustures," Superlattice. Microst. 47, 60-65 (2010).
  20. L. J. Prokopeva, J. D. Borneman, A. V. Kildishev, "Optical dispersion models for time-domain modeling of metal-dielectric nanostructures," IEEE Trans. Magn. 47, 1150-1153 (2011).
  21. Y. Ren, J. K. Chen, Y. Zhang, "Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers," J. Appl. Phys. 110, (2011) art. no. 113102.
  22. J. Shibayama, K. Watanabe, R. Ando, J. Yamauchi, H. Nakano, "Simple frequency-dependent FDTD algorithm for a Drude-critical points model," Proc. Asia-Pacific Microw.Conf. (2012) pp. WE1D-4.
  23. M. Hamidi, F. I. Baida, A. Belkhir, O. Lamrous, "Implementation of the critical points model in a SFM-FDTD code working in oblique incidence," J. Phys. D: Appl. Phys. 44, (2011) art. no. 245101.
  24. M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, "High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media," IEEE J. Quantum Electron. 40, 175-182 (2004).
  25. T. Grosges, A. Vial, D. Barchiesi, "Models of near-field spectroscopic studies: Comparison between finite-element and finite-difference methods," Opt. Exp. 13, 8483-8497 (2005).
  26. J. Pereda, L. Vielva, A. Vegas, A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. Microw. Theory Tech. 49, 377-381 (2001).
  27. D. Popovic, M. Okoniewski, "Effective permittivity at the interface of dispersive dielectrics in FDTD," IEEE Microw. Guided Wave Lett. 12, 401-403 (2003).
  28. A. Mohammadi, M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Opt. Exp. 14, 11 330-11 338 (2006).
  29. Y. Zhao, Y. Hao, "Finite-difference time-domain study of guided modes in nano-plasmonic waveguides," IEEE Trans. Antennas Propag. 55, 3070-3077 (2007).
  30. T. J. A. Mohammadi, M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Opt. Exp. 16, 7397-7406 (2008).
  31. J. P. Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
  32. K. P. Prokopidis, "On the development of efficient FDTD-PML formulations for general dispersive media," Int. J. Numer. Model. 21, 394-411 (2008).
  33. A. Zhao, J. Juntunen, A. Raisanen, "Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media," IEEE Microw. Guided Wave Lett. 8, 52-54 (1998).
  34. O. Ramadan, "Auxiliary differential equation formulation: An efficient implementation of the perfectly matched layer," IEEE Microw. Wireless Compon. Lett. 13, 69-71 (2003).
  35. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  36. Z. Lin, Y. Fang, J. Hu, C. Zhang, "On the FDTD formulations for modeling wideband Lorentzian media," IEEE Trans. Antennas Propag. 59, 1338-1346 (2011).
  37. M. C. Beard, C. A. Schmuttenmaer, "Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments," J. Chem. Phys. 114, 2903-2909 (2001).
  38. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2007).
  39. J.-Y. Lu, K.-P. Chiu, H.-Y. Chao, Y.-H. Chang, "Multiple metallic-shell nanocylinders for surface-enhanced spectroscopes," Nanoscale Res. Lett. 6, 173- (2011).
  40. S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
  41. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, (2006) art. no. 035407.
  42. I. Udagedara, M. Premaratne, I. D. Rukhlenko, H. T. Hattori, G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials," Opt. Exp. 17, 21 179-21 190 (2009).
  43. S. R. Mirnaziry, A. Setayesh, M. S. Abrishamian, "Design and analysis of plasmonic filters based on stubs," J. Opt. Soc. Amer. B 28, 1300-1307 (2011).
  44. COMSOL Multiphysics v4.3a http://www.comsol.com.
  45. P. Neutens, L. Lagae, G. Borghs, P. Van Dorpe, "Plasmon filters and resonators in metal-insulator-metal waveguides," Opt. Exp. 20, 3408-3423 (2012).
  46. PMMA Datasheet, MicroChem Corp. http://www.microchem.com.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited