OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2508–2514

Coupled-Mode Theory for Cherenkov-Type Guided-Wave Terahertz Generation Via Cascaded Difference Frequency Generation

Pengxiang Liu, Degang Xu, Hong Yu, Hao Zhang, Zhongxiao Li, Kai Zhong, Yuye Wang, and Jianquan Yao

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2508-2514 (2013)

View Full Text Article

Acrobat PDF (1187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A scheme for monochromatic terahertz (THz) generation via cascading enhanced Cherenkov-type difference frequency generation (DFG) in a sandwich-like waveguide is proposed. The novel scheme has the potential to overcome the quantum-defect limit and to provide an efficient output coupling. This process is elucidated by developing a coupled-mode theory and taking into account the pump depletion, waveguide mode properties, and THz output coupling. The effect of cascading enhancement is analyzed by comparing with non-cascaded DFG situation. It is predicted that THz power can be boosted by nearly 8-fold with a 400 MW/cm2 pump in a 40-mm-long Si-LiNbO3-Si waveguide.

© 2013 IEEE

Pengxiang Liu, Degang Xu, Hong Yu, Hao Zhang, Zhongxiao Li, Kai Zhong, Yuye Wang, and Jianquan Yao, "Coupled-Mode Theory for Cherenkov-Type Guided-Wave Terahertz Generation Via Cascaded Difference Frequency Generation," J. Lightwave Technol. 31, 2508-2514 (2013)

Sort:  Year  |  Journal  |  Reset


  1. D. Saeedkia, S. Safavi-Naeini, "Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves," J. Lightw. Technol. 26, 2409-2423 (2008).
  2. S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, K. L. Vodopyanov, "High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines," J. Opt. Soc. Am. B 24, 2509-2516 (2007).
  3. M. E. Dearborn, K. Koch, G. T. Moore, J. C. Diels, "Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing," Opt. Lett. 23, 759-761 (1998).
  4. M. Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004).
  5. J. E. Schaar, "Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide," IEEE J. Sel. Topics Quantum Electron. 14, 354-362 (2008).
  6. S. B. Bodrov, M. I. Bakunov, M. Hangyo, "Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core," J. Appl. Phys. 104, 093105 (2008).
  7. J. A. L'Huillier, "Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments," Appl. Phys. B 86, 197-208 (2007).
  8. P. X. Liu, "Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal," J. Opt. Soc. Am. B 29, 2425-2430 (2012).
  9. K. Suizu, "Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation," Opt. Exp. 17, 6676-6681 (2009).
  10. M. J. Li, M. P. De Micheli, Q. He, D. B. Ostrowsky, "Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides," IEEE J. Quantum Electron. 26, 1384-1393 (1990).
  11. N. Hashizume, "Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides," IEEE J. Quantum Electron. 28, 1798-1815 (1992).
  12. P. X. Liu, "Widely tunable, monochromatic THz generation via Cherenkov-type difference frequency generation in an asymmetric waveguide," IEEE J. Quantum Electron. 49, 179-185 (2013).
  13. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003) pp. 30.
  14. M. Cherchi, "Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison," IEEE J. Quantum Electron. 46, 368-376 (2010).
  15. T. Chen, J. Sun, L. Li, J. Tang, "Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide," J. Lightw. Technol. 30, 2156-2162 (2012).
  16. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).
  17. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).
  18. D. E. Zelmon, D. L. Small, D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997).
  19. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
  20. D. R. Grischkowsky, "An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy," Opt. Photonics News 3, 21-28 (1992).
  21. J. Shikata, M. Sato, T. Taniuchi, H. Ito, K. Kawase, "Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling," Opt. Lett. 24, 202-204 (1999).
  22. K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11-25 (2008).
  23. M. I. Bakunov, S. B. Bodrov, "Si-LiNbO3-air-metal structure for concentrated terahertz emission from ultrashort laser pulses," Appl. Phys. B 98, 1-4 (2010).
  24. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, A. N. Stepanov, "Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap," Appl. Phys. Lett. 100, 201114 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited