OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2515–2525

Quantum-Dot Double Layer Polymer Waveguides by Evanescent Light Coupling

Henry Gordillo, Isaac Suárez, Rafael Abargues, Pedro Rodríguez-Cantó, Guilhem Almuneau, and Juan P. Martínez-Pastor

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2515-2525 (2013)

View Full Text Article

Acrobat PDF (1569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this work we analyze numerically and experimentally new active waveguides based on a bilayer structure composed by a passive polymer and an active poly(mehtyl methacrylate) (PMMA) film doped with CdSe colloidal quantum dots (QDs), namely a nancomposite. In a first bilayer structure a planar PMMA layer is deposited on top of the nanocomposite, where the signal beam intensity is enhanced because this cladding layer is able to collect radiated emission of QDs. Moreover, the pump beam is also propagating through the cladding without limitation by QD absorption. These results are extended to a second bilayer structure, where ridge patterns of a commercially available resist (SU-8) are deposited on the top of the nanocomposite active layer. These SU-8 patterns are also able to guide with low absorption losses both pump and signal beams. The optimum geometrical parameters of the bilayer structures were properly designed to optimize the light waveguiding, previous to their fabrication and optical characterization. For this purpose, a spontaneous emission model has been developed and programmed into an active beam propagation method. This technology can be the base for developing integrated photonics on silicon at visible and telecom wavelengths.

© 2013 IEEE

Henry Gordillo, Isaac Suárez, Rafael Abargues, Pedro Rodríguez-Cantó, Guilhem Almuneau, and Juan P. Martínez-Pastor, "Quantum-Dot Double Layer Polymer Waveguides by Evanescent Light Coupling," J. Lightwave Technol. 31, 2515-2525 (2013)

Sort:  Year  |  Journal  |  Reset


  1. G. Lifante, Integrated Photonics (Wiley, 2003).
  2. M. C. Gather, K. Meerholz, N. Danzm, K. Leosson, "Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer," Nat. Photon. 4, 457-461 (2010).
  3. J. Clark, G. Lanzani, "Organic photonics for communications," Nat. Photon. 4, 438-446 (2010).
  4. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, M. Isaacson, " A bio-fluidic-photonic platform based on deep UV modification of polymers," IEEE J. Sel. Topics Quantum. Electron. 13, 214-222 (2007).
  5. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
  6. M. A. Uddin, H. P. Chan, "Materials and process optimization in the reliable fabrication of polymer photonic devices," J. Optoelectron. Adv. M. 10, 1-17 (2008).
  7. K. C. Tsang, C. Y. Wong, E. Y. B. Pu, "Eu3-doped planar optical polymer waveguide amplifiers," IEEE Photon. Technol. Lett. 22, 1024-1026 (2010).
  8. M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, M. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, "Rib waveguide dye-doped polymer amplifier with up to 26 dB optical gain at 625 nm," Appl. Phys. Lett. 85, 5137-5139 (2004).
  9. I. Suárez, H. Gordillo, R. Abargues, S. Albert, J. P. Martínez-Pastor, "Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films," Nanotechnology 22, 435202 (2011).
  10. D. Amarasinghe, A. Ruseckas, G. A. Turnbull, I. G. W. Samuel, "Organic semiconductor optical amplifiers," Proceedings of the IEEE 97, 1637-1650 (2009).
  11. J. T. Kim, J. J. Ju, S. Park, M. H. Lee, "O/E integration of polymer waveguide devices by using replication technology," IEEE J. Sel. Topics Quantum. Electron. 13, 177-184 (2007).
  12. M. B. Christiansen, M. Scholer, A. Kristensen, "Integration of active and passive polymer optics," Opt. Exp. 15, 3931-3939 (2007).
  13. N. Tomczak, D. Janczeuski, M. Han, G. J. Vancson, "Designer polymer-quantum dot architectures," Prog. Polym. Sci. 34, 393-430 (2009).
  14. V. I. Klimov, "Nanocrystal quantum dots: From fundamental photophysics to multicolor lasing," Los Alamos Sci. 28, 214-220 (2003).
  15. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem. 100, 13226-13239 (1996).
  16. T. N. Smirnova, O. V. Sakhno, P. V. Yezhov, L. M. Kokhtych, L. M. Goldenberg, J. Stumpe, " Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method," Nanotechnology 20, 245707 (2009).
  17. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
  18. J. J. Jaseniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, P. Mulvaney, "Highly efficient amplified stimulated emission from CdSe-CdS-ZnS quantum dot doped waveguides with two photon infrared optical pumping," Adv. Mater. 20, 69-73 (2008).
  19. H. Gordillo, I. Suárez, R. Abargues, P. Rodríguez-Cantó, S. Albert, J. P. Martínez-Pastor, "Polymer/QDs nanocomposites for waveguiding applications," J. Nanomater. 2012, 960201 (2012).
  20. H. Gordillo, I. Suárez, R. Abargues, P. Rodríguez-Cantó, J. P. Martínez-Pastor, " Color tuning and white light by dispersing CdSe, CdTe, CdS in PMMA nanocomposite waveguides," IEEE Photonics J. 5, 220412 (2013).
  21. A. Bueno, I. Suárez, R. Abargues, S. Sales, J. P. Martínez-Pastor, "Temperature sensor based on colloidal quantum dots-PMMA nanocomposite waveguides," IEEE Sens. J. 12, 3069-3074 (2012).
  22. D. Bosc, A. Maalouf, F. Henrio, S. Haesaert, "Strengthened poly(methacrylate) materials for optical waveguides and integrated functions," Opt. Mater. 30, 1514-1520 (2008).
  23. http://www.microchem.com/Prod-SU-8_KMPR.htm.
  24. B. Y. Shew, C. H. Kuo, Y. C. Huang, Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sensor Actuat. A-Phys 120, 383-389 (2005).
  25. N. Pelletier, B. Bêche, E. Gaviot, L. Camberlein, N. Grossard, F. Polet, J. Zyss, "Single-mode rib optical waveguides on SOG/SU-8 polymer and integrated mach-zehnder for designing thermal sensors," IEEE Sens. J. 6, 565-570 (2006).
  26. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, "Optical gain at 650 nm from a polymer waveguide with dye-doped cladding," Appl. Phys. Lett. 87, 231116 (2005).
  27. D. Van Thourhout, G. Roelkens, R. Baets, W. Bogaerts, J. Brouckaert, P. Debackere, P. Dumon, S. Scheerlinck, J. Schrauwen, D. Taillert, F. Van Laere, J. Van Campenhout, "Coupling mechanisms for a heterogeneous silicon nanowire platform," Semicond. Sci. Technol. 23, 064004 (2008).
  28. N. C. Giebink, G. P. Wiederrecht, R. Wasielewski, "Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators," Nat. Photon. 5, 594-701 (2011).
  29. M. Ramuz, L. Bürgi, R. Stanley, C. Winnewisser, "Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors," J. Appl. Phys. 105, 084508 (2009).
  30. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, M. Smit, "Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene," J. Electrochem. Soc. 153, G1505-G1019 (2006).
  31. W. W. Yu, X. Peng, " Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers," Angew. Chem. Int. Ed. 41, 2368-2371 (2002).
  32. W. W. Yu, L. Qu, W. Guo, X. Peng, "Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals," Chem. Mater. 15, 2854-2860 (2003).
  33. de Mello Donegá, R. Koole, "Size dependendence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
  34. A. P. Demchenko, Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging (Springer, 2010).
  35. H. Sharma, S. N. Sharma, G. Sing, S. M. Shivaprasad, " Effect of ratios of Cd:Se in CdSe nanoparticles on optical edge shifts and photoluminescence properties," Physica E 31, 180 (2006).
  36. W. Teiss, "Optical properties of porous silicon," Surf. Sci. Rep. 29, 91-192 (1997).
  37. J. de Merlier, D. V. Thourhout, G. Morthier, R. Baets, "Amplified spontaneous emission in index-guided multimodal waveguide structures ," IEEE J. Quantum. Electron. 39, 1099-1105 (2003).
  38. F. Caccavale, F. Segato, I. Mansour, "A numerical study of erbium doped active LiNbO3 waveguides by the beam propagation method," J. Lightw. Technol. 15, 2294-2300 (1997).
  39. J. H. Yan, C. G. Wang, H. Zhang, C. Cheng, "Evaluation of emission cross section of CdSe quantum dots for laser applications," Laser Phys. Lett. 9, 529-531 (2012).
  40. C. A. Leatherdale, W. K. Woo, F. V. Mikulee, M. G. Bawendi, "On the absorption cross section of CdSe Nanocrystal quantum dots," J. Phys. Chem. B 106, 7619-7622 (2002).
  41. W. P. Huang, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29, 2639-2649 (1993).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited