OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2540–2549

Metal-Insulator-Metal Waveguides With Self Aligned and Electrically Contacted Thin Semiconductor Cores Exhibiting High Optical Confinement and Low Loss

Martin T. Hill

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2540-2549 (2013)

View Full Text Article

Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A metal insulator metal (MIM) waveguide structure which propagates a strongly confined sub-wavelength plasmon mode is proposed. In particular the structure permits electrical pumping of the waveguide core. The waveguide can in principle be fabricated with thin cores down to a few tens of nano meters wide. When quantum well material is employed, the waveguide core can be formed with self aligned quantum wire or quantum dot gain material. The performance of the proposed structure is compared to other plasmon mode and dielectric waveguide structures, and shown to provide significantly improved confinement of energy in the high index waveguide core. The implications of such waveguides when used as electrically pumped waveguides for optical amplifiers and nano-lasers is examined. It is shown that these electrically pumped waveguide structures offer the possibility of net modal gains in the region of 1900 cm-1, and nano-lasers with intrinsic optical modulation frequencies reaching into the THz regime with minimum pump currents on the order of sixty micro-amps.

© 2013 IEEE

Martin T. Hill, "Metal-Insulator-Metal Waveguides With Self Aligned and Electrically Contacted Thin Semiconductor Cores Exhibiting High Optical Confinement and Low Loss," J. Lightwave Technol. 31, 2540-2549 (2013)

Sort:  Year  |  Journal  |  Reset


  1. H. A. Atwater, "The promise of plasmonics," Sci. Amer. 296, 38-45 (2007).
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface Plasmon subwavelength optics," Nature 424, 824-830 (2003).
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, "Plasmonics for extreme light concentration and maniupulation," Nat. Mat. 9, 193-204 (2010).
  4. B. Prade, J. Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).
  5. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser at λ ~ 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
  6. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett. 93, 113110 (2008).
  7. V. G. Weizer, N. S. Fatemi, "Low resistance silver contacts to indium phosphide: Electrical and metallurgical considerations," J. Appl. Phys. 73, 2353-2359 (1993).
  8. M. T. Hill, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Exp. 17, 11110 (2009).
  9. F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguide," Appl. Phys. Lett. 86, 211101 (2005).
  10. M. Krause, "Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces," J. Lightw. Technol. 29, 691-699 (2011).
  11. M. T. Hill, Semiconductors and Semimetals (Academic, 2012) pp. 335-370.
  12. R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A 3, 233-245 (1970).
  13. S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
  14. D. Pasquariello, "Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices," J. Lightw. Technol. 24, 1470-1477 (2006).
  15. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, X. Zhang, "A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation," Nature Photon. 2, 496-500 (2008).
  16. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
  17. K. Liu, "Wave propagation in deep-subwavelength mode waveguides," Opt. Lett. 37, 2826-2828 (2012).
  18. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).
  19. E. Yablonovitch, E. O. Kane, "Band structure engineering of semiconductor lasers for optical communications," J. Lightw. Technol. 6, 1292-1299 (1988).
  20. M. Asada, Y. Miyamoto, Y. Suematsu, "Gain and the threshold of three-dimensional quantum-box lasers," IEEE J. Quantum Electron. QE-22, 1915-1921 (1986).
  21. H. Itoh, M. Yoshita, H. Akiyama, "Micro-photoluminescence characterizations of GaInAsP/InP single quantum wires fabricated by dry etching and regrowth," J. Appl. Phys. 102, 093509 (2007).
  22. D. Plumwongrot, T. Maruyama, A. Haque, H. Yagi, K. Miura, Y. Nishimoto, S. Arai, "Polarization anisotropy of spontaneous emission spectra in GaInAsP/InP quantum-wire structures," Jpn. J. Appl. Phys. 47, 3735-3741 (2008).
  23. S.-W. Chang, T.-R. Lin, S. L. Chuang, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Exp. 18, 15039 (2010).
  24. D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).
  25. M. T. Hill, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-208 (2004).
  26. C.-Y. A. Ni, S. L. Chuang, "Theory of high-speed nanolasers and nanoLEDs," Opt. Exp. 12, 16450-16470 (2012).
  27. H. Altug, D. Englund, J. Vu?kovi?, "Ultrafast photonic crystal nanocavity laser," Nature Phys. 2, 485-488 (2006).
  28. D. A. Genov, R. F. Oulton, G. Bartal, X. Zhang, "Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures," Phys. Rev. B 83, 245312 (2011).
  29. M. I. Stockman, "The spaser as a nanoscale quantum generator and ultrafast amplifier," J. Opt. 12, 024004-1-13 (2010).
  30. M. T. Hill, "Lasing in Metallic-Coated Nanocavities," Nature Photon. 1, 589-594 (2007).
  31. M. P. Nezhad, "Room-temperature subwavelength metallo-dielectric lasers," Nature Photon. 4, 395-399 (2010).
  32. M. J. H. Marell, "Plasmonic distributed feedback at telecomunications wavelengths," Opt. Exp. 19, 15109-15118 (2011).
  33. C.-Y. Lu, S.-W. Chang, S.-H. Yang, S. L. Chuang, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett. 95, 233507 (2009).
  34. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).
  35. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1960).
  36. K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain," IEEE J. Quantum Electron. 24, 523-530 (1988).
  37. A. Haque, H. Yagi, T. Sano, T. Maruyama, S. Arai, "Electronic band structures of GaInAsP/InP vertically stacked multiple quantum wires with strain-compensating barriers," J. Appl. Phys. 94, 2018-2023 (2003).
  38. A. M. Lakhani, M.-K. Kim, E. K. Lau, M. C. Wu, "Plasmonic crystal defect nanolaser," Opt. Exp. 19, 18238 (2011).
  39. J. B. Judkins, R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Amer. A 12, 1974-1983 (1995).
  40. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited