OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2565–2569

Proposal of Coupled Ring Resonator Based on One-Dimensional Photonic Crystal Nanocavity

Shuntaro Makino, Yuhei Ishizaka, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2565-2569 (2013)


View Full Text Article

Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose the coupled ring resonator based on one-dimensional photonic crystal (1-D PC) nanocavity. The proposed structure is composed by introducing 1-D PC nanocavity into the CROW based on ring resonator, and we expect that it can achieve small group velocity. We investigate the transmission characteristics of the proposed structure by using 2-D scalar finite element method (FEM) for periodic waveguide analysis. We obtained the group velocity vg = 0.033c with c being light velocity in vacuum because of combining 1-D PC nanocavity and CROW based on ring resonator. Moreover, we consider reduction of footprint of the proposed structure for photonic integration.

© 2013 IEEE

Citation
Shuntaro Makino, Yuhei Ishizaka, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba, "Proposal of Coupled Ring Resonator Based on One-Dimensional Photonic Crystal Nanocavity," J. Lightwave Technol. 31, 2565-2569 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-15-2565


Sort:  Year  |  Journal  |  Reset

References

  1. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007).
  2. T. Baba, "Slow light in photonic crystals," Nat. Photon. 2, 465-473 (2008).
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902-1-253902-4 (2001).
  4. D. Mori, T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Exp. 13, 9398-9408 (2005).
  5. T. Kawasaki, D. Mori, T. Baba, "Experimental observation of slow light in photonic crystal coupled waveguides," Opt. Exp. 15, 10274-10281 (2007).
  6. A. Y. Petrov, M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004).
  7. J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Exp. 16, 6227-6232 (2008).
  8. S. A. Schulz, L. O. Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, "Dispersion engineered slow light in photonic crystals: A comparison," J. Opt. 12, 1-10 (2010).
  9. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  10. M. Bayindit, B. Temelkuran, E. Ozbay, "Propagation of photons by hopping: A waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals," Phys. Rev. B 61, R11855-R11857 (2000).
  11. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, M. Notomi, "Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide," Opt. Exp. 19, 19861-19874 (2011).
  12. F. Xia, L. Sekaric, Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photon. 1, 65-71 (2007).
  13. A. Martinez, J. Garcia, P. Sanchis, F. C. Soto, J. Blasco, J. Marti, "Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals," Opt. Lett. 32, 635-637 (2007).
  14. Y. Kawaguchi, N. Kono, K. Saitoh, M. Koshiba, "Loss reduction mechanism for coupled cavity waveguides in one-dimensional photonic crystals," J. Lightwave Technol. 26, 3461-3467 (2008).
  15. Y. Kawaguchi, K. Saitoh, M. Koshiba, "Analysis of leakage losses in one-dimensional photonic crystal coupled resonator optical waveguide using 3-D finite element method," J. Lightwave Technol. 28, 2977-2983 (2010).
  16. Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
  17. Y. Akahane, T. Asano, B. S. Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Exp. 13, 1202-1214 (2005).
  18. B. S. Song, S. Noda, T. Asano, Y. Akahane, "Ultra-high-Q photonic double-hetero structure nanocavity," Nat. Mater. 4, 207-210 (2005).
  19. M. Notomi, E. Kuramochi, T. Tanabe, "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nat. Photon. 2, 741-747 (2008).
  20. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, "Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings," Opt. Exp. 18, 15859-15869 (2010).
  21. M. Notomi, E. Kuramochi, H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Exp. 16, 11095-11102 (2008).
  22. Y. Kawaguchi, S. Makino, K. Saitoh, M. Koshiba, "Structural dependence of group velocity and leakage loss in 1-D photonic crystal coupled resonator optical waveguide with modulated mode-gap," IEEE Photon. J. 4, 300-309 (2012).
  23. D. Goldring, U. Levy, D. Mendlovic, "Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis," Opt. Exp. 15, 3156-3168 (2007).
  24. Y. Zhang, C. Hamsen, J. T. Choy, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, "Photonic crystal disk lasers," Opt. Lett. 36, 2704-2706 (2011).
  25. K. C. Huang, E. Lidorikis, S. Jiang, J. D. Joannopoulos, K. A. Nelson, "Nature of lossy bloch states in polaritonic photonic crystals," Phys. Rev. B 69, 195111-1-195111-10 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited