OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2570–2577

Pulse-Shaping With Digital, Electrical, and Optical Filters—A Comparison

Rene Schmogrow, Shalva Ben-Ezra, Philipp C. Schindler, Bernd Nebendahl, Christian Koos, Wolfgang Freude, and Juerg Leuthold

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2570-2577 (2013)


View Full Text Article

Acrobat PDF (1303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We investigate the performance of sinc-shaped QPSK signal pulses generated in the digital, electrical, and optical domains. To this end an advanced transmitter with a digital pulse-shaper is compared to analog transmitters relying on pulse-shaping with electrical and optical filters, respectively. The signal quality is assessed within a single carrier setup as well as within an ultra-densely spaced WDM arrangement comprising three channels. An advanced receiver providing additional digital filtering with an adaptive equalization algorithm to approximate an ideal brick-wall Nyquist filter has been used for all schemes. It is found that at lower symbol rates, where digital processing is still feasible, digital filters with a large number of filter coefficients provide the best performance. However, transmitters equipped with only electrical or optical pulse-shapers already outperform transmitters sending plain unshaped NRZ signals, so that for higher symbol rates analog electrical and optical techniques not only save costs, but are the only adequate solution.

© 2013 IEEE

Citation
Rene Schmogrow, Shalva Ben-Ezra, Philipp C. Schindler, Bernd Nebendahl, Christian Koos, Wolfgang Freude, and Juerg Leuthold, "Pulse-Shaping With Digital, Electrical, and Optical Filters—A Comparison," J. Lightwave Technol. 31, 2570-2577 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-15-2570


Sort:  Year  |  Journal  |  Reset

References

  1. G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, "Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems," IEEE Photon. Technol. Lett. 22, 1129-1131 (2010).
  2. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, "Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM," Opt. Express 20, 317-337 (2012).
  3. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, "Single-laser 32.5 Tbit/s Nyquist WDM transmission," J. Opt. Commun. Netw. 4, 715-723 (2012).
  4. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, T. Wang, "101.7-Tb/s (370 $\times$ 294-Gb/s) PDM-128QAM-OFDM transmission over 3 $\times$ 55-km SSMF using pilot-based phase noise mitigation," Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011) paper PDPB5.
  5. X. Zhou, L. Nelson, P. Magill, B. Zhu, D. Peckham, "8 $\times$ 450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM," Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2011) paper PDPB3.
  6. Z. Dong, J. Yu, H. Chien, N. Chi, L. Chen, G. Chang, "Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection," Opt. Express 19, 11100-11105 (2011).
  7. T. Hirooka, P. Ruan, P. Guan, M. Nakazawa, "Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km," Opt. Express 20, 15001-15007 (2012).
  8. U. Koc, A. Leven, Y. Chen, N. Kaneda, "Digital Coherent Quadrature Phase-Shift-Keying (QPSK)," Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006) paper OThI1.
  9. J. Downie, J. Hurley, D. Pikula, X. Zhu, "Ultra-long-haul 112 Gb/s PM-QPSK transmission systems using longer spans and Raman amplification," Opt. Express 20, 10353-10358 (2012).
  10. R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, "Real-time OFDM transmitter beyond 100 Gbit/s," Opt. Express 19, 12740-12749 (2011).
  11. C. Pulikkaseril, L. Stewart, M. Roelens, G. Baxter, S. Poole, S. Frisken, "Spectral modeling of channel band shapes in wavelength selective switches," Opt. Express 19, 8458-8470 (2011).
  12. R. Paiam, Optical Interleaver/de-Interleaver U.S. Patent No. 6 222 958 (2001).
  13. B. Szafraniec, B. Nebendahl, T. Marshall, "Polarization demultiplexing in Stokes space," Opt. Express 18, 17928-17939 (2010).
  14. R. Schmogrow, P. Schindler, C. Koos, W. Freude, J. Leuthold, "Blind polarization demultiplexing with low computational complexity," IEEE Photon. Technol. Lett. 25, 1230-1233 (2013).
  15. M. Sjödin, P. Johannisson, H. Wymeersch, P. Andrekson, M. Karlsson, "Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s," Opt. Express 19, 7839-7846 (2011).
  16. F. M. Gardner, "A BPSK/QPSK timing-error detector for sampled receivers," IEEE Trans. Comm. COM-34, 423-429 (1986).
  17. M. Yan, Z. Tao, L. Dou, L. Li, Y. Zhao, T. Hoshida, J. Rasmussen, "Digital clock recovery algorithm for nyquist signal," Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013) paper OTu2I.7.
  18. G. Clark, S. Mitra, S. Parker, "Block implementation of adaptive digital filters," IEEE Trans. Circuits Syst. 28, 584-592 (1981).
  19. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, "Error vector magnitude as a performance measure for advanced modulation formats," IEEE Photon. Technol. Lett. 24, 61-63 (2012).
  20. H. Nyquist, "Certain topics in telegraph transmission theory," Trans. AIEE 47, 617-644 (1928).
  21. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. Schindler, C. Koos, W. Freude, J. Leuthold, "512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz," Opt. Express 20, 6439-6447 (2012).
  22. R. Schmogrow, R. Bouziane, M. Meyer, P. Milder, P. Schindler, R. Killey, P. Bayvel, C. Koos, W. Freude, J. Leuthold, "Real-time OFDM or Nyquist pulse generation—Which performs better with limited resources?," Opt. Express 20, B543-B551 (2012).
  23. R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, J. Leuthold, "252 Gbit/s real-time nyquist pulse generation by reducing the oversampling factor to 1.33," Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013) paper OTu2I.1.
  24. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28, 662-701 (2010).
  25. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, "Corrections to: Error vector magnitude as a performance measure for advanced modulation formats," IEEE Photon. Technol. Lett. 24, 2198 (2012) ibid..

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited