OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2578–2583

Improving OOK Modulation Rate of Visible LED by Peaking and Carrier Sweep-Out Effects Using ${n}$-Schottky Diodes-Capacitance Circuit

P. H. Binh, V. D. Trong, Pierre Renucci, and X. Marie

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2578-2583 (2013)


View Full Text Article

Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we present an improvement for LED driver circuit by inserting a threshold voltage on the resistive branch of the conventional RC current-shaping circuit. The proposed method enhances the peaking and carrier sweep-out effects in the LED's active region when the electrical pulse is turned on and off, respectively, thereby the LED modulation rate can be greatly improved. A practical implementation of the transmitter using Schottky diodes to provide the threshold voltage and an off-the-shelf AlGaInP 660 nm RC-LED is reported. We demonstrate an error-free data transmission at the rate of 500 Mbit/s over 20 m step-index POF.

© 2013 IEEE

Citation
P. H. Binh, V. D. Trong, Pierre Renucci, and X. Marie, "Improving OOK Modulation Rate of Visible LED by Peaking and Carrier Sweep-Out Effects Using ${n}$-Schottky Diodes-Capacitance Circuit," J. Lightwave Technol. 31, 2578-2583 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-15-2578


Sort:  Year  |  Journal  |  Reset

References

  1. A. Nespola, S. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, N. Weber, "High-speed communications over polymer optical fibers for in-building cabling and home networking," IEEE Photonics J. 2, 347-358 (2010).
  2. T. Kibler, S. Poferl, G. Bock, H.-P. Huber, E. Zeeb, "Optical data buses for automotive applications," J. Lightw. Technol. 22, 2184-2199 (2004).
  3. T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lightings," IEEE Trans. Consum. Electron. 50, 100-107 (2004).
  4. S. C. J. Lee, F. Breyer, D. Cardenas, S. Randel, A. M. J. Koonen, "Real-time gigabit DMT transmission over plastic optical fibre," Electron. Lett. 45, 1342-1343 (2009).
  5. E. F. Schubert, N. E. J. Hunt, R. J. Malik, M. Micovic, D. L. Miller, "Temperature and modulation characteristics of resonant-cavity light-emitting diodes," J. Lightw. Technol. 14, 1721-1729 (1996).
  6. T. P. Lee, A. G. Dentai, "Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED's for optical communication systems," IEEE J. Quantum Electron. 14, 150-159 (1978).
  7. W. Harth, W. Huber, J. Heinen, "Frequency response of GaAlAs light-emitting diodes," IEEE Trans. Electron Devices 23, 478-480 (1976).
  8. C. H. Chen, M. Hargis, J. M. Woodall, M. Mellock, J. S. Reynolds, E. Yablonovitch, W. Wang, "GHz bandwidth GaAs light-emitting diodes," Appl. Phys. Lett. 74, 3140-3142 (1999).
  9. M. Akbulut, C. H. Chen, M. C. Hargis, A. M. Weiner, M. R. Melloch, J. M. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, 85-87 (2001).
  10. K. Ikeda, S. Horiushi, T. Tanaka, W. Susaki, "Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED's for optical communications," IEEE Trans. Electron Devices 24, 1001-1005 (1977).
  11. M. M. Dumitrescu, M. J. Saarinen, M. D. Guina, M. V. Pessa, "High-speed resonant cavity light-emitting diodes at 650 nm," IEEE J. Sel. Topics Quantum Electron. 8, 219-230 (2002).
  12. R. Joray, M. Ilegems, R. P. Stanley, W. Schmid, R. Butendeich, R. Wirth, A. Jaeger, K. Streubel, "Far-field radiation pattern of red emitting thin-film resonant cavity LEDs," IEEE Photon. Technol. Lett. 18, 1052-1054 (2006).
  13. C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak, "Scaling of light emitting transistor for multigigahertz optical bandwidth," Appl. Phys. Lett. 94, 171101 (2009).
  14. G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak, "4.3 GHz optical bandwidth light emitting transistor," Appl. Phys. Lett. 94, 241101 (2009).
  15. G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak, "Tilted-charge high speed (7 GHz) light emitting diode," Appl. Phys. Lett. 94, 231125 (2009).
  16. Firecomms RCLED-Based 650 nm FC300R http://www.firecomms.com/.
  17. Red LED L10762 http://www.hamamatsu.com/.
  18. R. W. Dawson, "LED bandwidth improvement by bipolar pulsing," IEEE J. Quantum Electron. 16, 697-699 (1980).
  19. T. Suzuki, T. Ebata, K. Fukuda, N. Hirakata, K. Yoshida, S. Hayashi, H. Takada, T. Sugawa, "High-speed 1.3-$\mu {\rm m}$ LED transmitter using GaAs driver IC," J. Lightw. Technol. 4, 790-794 (1986).
  20. T. P. Lee, "Effect of junction capacitance on the rise time of LED's and on the turn-on delay of injection lasers," Bell Syst. Tech. J. 54, 53-68 (1975).
  21. P. H. Binh, P. Renucci, V. G. Truong, X. Marie, "Schottky-capacitance pulse-shaping circuit for high-speed light emitting diode operation," Electron. Lett. 48, 721-723 (2012).
  22. P. H. Binh, V. D. Trong, C. T. Anh, P. Renucci, X. Marie, C. T. Truong, A. T. Pham, "Novel LED's driver circuit for broadband short-range optical fiber communication systems," Proc. Int. Conf. Commun. Electron. (ICCE'12) (2012) pp. 35-39.
  23. M. Uhle, "The influence of source impedance on the electrooptical swiching behavior of LED's," IEEE Trans. Electron Devices 23, 438-441 (1976).
  24. A. K. Dutta, K. Hara, K. Kobayashi, N. Nagashima, "Impedance, modulation response and equivalent-circuit of 650 nm surface emitting type light-emitting diode for POF data-links," Solid-State Electron. 42, 1787-1791 (1998).
  25. J. Zucker, "Closed-form calculation of the transient behavior of (Al,Ga)As double-heterojunction LED's," J. Appl. Phys. 49, 2543-2545 (1978).
  26. J. Zucker, R. B. Lauer, "Optimization and characterization of high-radiance (Al,Ga)As double-heterostructure LED's for optical communication systems," IEEE J. Solid-State Circuits 13, 119-124 (1978).
  27. T. B. Norris, X. Song, W. J. Straff, L. F. Eastman, G. Wicks, G. A. Mourou, "Tunneling escape time of electrons from a quantum well under the influence of an electric field," Appl. Phys. Lett. 54, 60-62 (1989).
  28. J. Nelson, M. Paxman, K. W. J. Barnham, J. S. Roberts, C. Button, "Steady-state carrier escape from single quantum wells," IEEE J. Quantum Electron. 29, 1460-1468 (1993).
  29. K. R. Lefebvre, A. F. M. Anwar, "Electron escape time from single quantum wells," IEEE J. Quantum Electron. 33, 187-191 (1997).
  30. J. S. Massa, G. S. Buller, A. C. Walker, "Time-resolved photoluminescence studies of cross-well transport in a biased GaAs/AlGaAs multiple quantum well p-i-n structure," J. Appl. Phys. 82, 712-717 (1997).
  31. V. G. Truong, P.-H. Binh, P. Renucci, M. Tran, Y. Lu, H. Jaffes, J.-M. Geoge, C. Deranlot, A. Lemaitre, T. Amand, X. Marie, "High speed pulsed electrical spin injection in spin-light emitting diode," Appl. Phys. Lett. 94, 141109 (2009).
  32. Ngspice Documentation http://ngspice.sourceforge.net/.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited