OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 15 — Aug. 1, 2013
  • pp: 2606–2612

Noise Cancellation in Long-Range Surface Plasmon Dual-Output Mach-Zehnder Interferometers

Hui Fan and Pierre Berini

Journal of Lightwave Technology, Vol. 31, Issue 15, pp. 2606-2612 (2013)

View Full Text Article

Acrobat PDF (1260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The characterisation of dual-output Mach-Zehnder interferometers operating with long-range surface plasmon-polaritons at a free-space wavelength of $\sim$ 1370 nm is reported. The devices were constructed by embedding Au stripes in Cytop claddings, and consist of a symmetric Mach-Zehnder interferometer in cascade with a 50:50 coupler. By injecting electric current via probes to generate heat in the active region in one arm of the interferometer, a phase difference between the arms was thermo-optically induced, modulating the optical power of the two outputs. The outputs were complementary as expected theoretically, thus demonstrating the switching abilities of the structure. The advantages for sensing applications of a dual-output interferometer over a single-output one are a 2X larger dynamic range and the ability to cancel common noise and source fluctuations. The larger dynamic range and noise cancellation produced a minimum detectable phase shift 4X lower than obtained by monitoring a single output. The smallest value of $\Delta\phi_{\min}$ obtained was $\sim$ 3 mrad. The structure is especially promising for (bio)chemical sensing applications.

© 2013 IEEE

Hui Fan and Pierre Berini, "Noise Cancellation in Long-Range Surface Plasmon Dual-Output Mach-Zehnder Interferometers," J. Lightwave Technol. 31, 2606-2612 (2013)

Sort:  Year  |  Journal  |  Reset


  1. Electromagnetic Surface Modes (Wiley, 1982).
  2. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North Holland, 1982).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  4. P. Berini, "Long-range surface plasmon polaritons," Adv. Opt. Photon. 1, 484-588 (2009).
  5. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
  6. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightw. Technol. 24, 477-494 (2006).
  7. H. Fan, R. Buckley, P. Berini, "Passive long-range surface plasmon-polariton devices in Cytop," Appl. Opt. 51, 1459-1467 (2012).
  8. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).
  9. E. D. Palik, G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  10. K. Leosson, T. Nikolajsen, A. Boltasseva, S. I. Bozhevolnyi, "Longrange surface plasmon polariton nanowire waveguides for device applications," Opt. Exp. 14, 314-319 (2006).
  11. S. Park, S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
  12. H. Fan, P. Berini, "Thermo-optic characterisation of long-range surface plasmon devices in Cytop," Appl. Opt. .
  13. G. Gagnon, N. Lahoud, G. A. Mattiussi, P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightw. Technol. 24, 4391-4402 (2006).
  14. I. Breukelaar, R. Charbonneau, P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides," J. Appl. Phys. 100, 043104 (2006).
  15. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
  16. R. G. Heideman, P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system," Sensors and Actuators B 61, 100-127 (1999).
  17. L. Fabiny, S. T. Vohra, F. Bucholtz, A. Dandridge, "Three-channel low-frequency fiber-optic voltage sensor," Opt. Lett. 19, 228-230 (1994).
  18. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, J. Ingenhoff, "Integrated optical Mach-Zehnder interferometers as simazine immunoprobes," Sensors and Actuators B 38–39, 277-282 (1997).
  19. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightw. Technol. 16, 583-592 (1998).
  20. A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, 1992).
  21. S. K. Sheem, "Optical fiber interferometers with [3 $\times$ 3] directional couplers: Analysis," J. Appl. Phys. 52, 3865 (1981).
  22. K. P. Koo, A. B. Tveten, A. Dandridge, "Passive stabilization scheme for fiber interferometers using (3 $\times$ 3) fiber directional couplers," Appl. Phys. Lett. 41, 616 (1982).
  23. D. A. Jackson, A. Dandridge, S. K. Sheem, "Measurement of small phase shifts using a single-mode optical-fiber interferometer," Opt. Lett. 5, 139-141 (1980).
  24. P. Hua, B. Jonathan Luff, G. R. Quigley, J. S. Wilkinson, K. Kawaguchi, "Integrated optical dual Mach-Zehnder interferometer sensor," Sensors and Actuators B 87, 250-257 (2002).
  25. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
  26. J. Ptasinski, L. Pang, P.-C. Sun, B. Slutsky, Y. Fainman, "Differential detection for nanoplasmonic resonance sensors," IEEE Sensors J. 12, 384-388 (2012).
  27. C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, P. Berini, "Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels," J. Vac. Sci. Technol. B 28, 729-735 (2010).
  28. Asahi Glass Co., Ltd.Japan“Amorphous fluoropolymer CYTOP,” (2009) www.agc-cytop.com.
  29. O. Krupin, H. Asiri, C. Wang, R. N. Tait, P. Berini, "Biosensing using straight long-range surface plasmon waveguides," Opt. Exp. .
  30. H. Asiri, Fabrication of surface plasmon biosensors in CYTOP Master's thesis Dept. Chem. Biolog. Eng. Univ. OttawaOttawaCanada (2012).
  31. S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, N. Grote, "All-polymer 8 $\times$ 8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP)," Proc. OFC/NFOEC (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited