Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 18,
  • pp. 3077-3084
  • (2013)

Scalable, Low-Energy Hybrid Photonic Space Switch

Not Accessible

Your library or personal account may give you access

Abstract

A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach–Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than −50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A “building block” approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches.

© 2013 IEEE

PDF Article
More Like This
Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White
Opt. Lett. 39(6) 1449-1452 (2014)

Photonic switching in high performance datacenters [Invited]

Qixiang Cheng, Sébastien Rumley, Meisam Bahadori, and Keren Bergman
Opt. Express 26(12) 16022-16043 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.