Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 20,
  • pp. 3237-3242
  • (2013)

Joint Digital Preequalization for Spectrally Efficient Super Nyquist-WDM Signal

Not Accessible

Your library or personal account may give you access

Abstract

We propose a joint digital preequalization scheme for a Nyquist wavelength division multiplexing (N-WDM) system to compensate for the intersymbol interference caused by a limited channel bandwidth or aggressive prefiltering. A digital raised-cosine pulse filter is implemented before the reference-based preequalization scheme to enhance the tolerance of the signal to the crosstalk from adjacent channels. The experiment illustrates eight-channel digital–analog-converter generation of the polarization division multiplexing quadrature phase shift keying system at 112 Gb/s per channel on a 25-GHz grid, adopting the reference-based digital preequalization considering narrow-band optical filtering effect at the transmitter. The experimental results show that the proposed preequalization scheme allows for an ultradense channel spacing of 0.89 times of the baud rate in the super N-WDM system with a as large as 5-dB optical signal-to-noise ratio improvement.

© 2013 IEEE

PDF Article
More Like This
Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal

Junwen Zhang, Jianjun Yu, and Nan Chi
Opt. Express 21(25) 31212-31217 (2013)

Adaptive quadrature-polybinary detection in super-Nyquist WDM systems

Sai Chen, Chongjin Xie, and Jie Zhang
Opt. Express 23(6) 7933-7939 (2015)

Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping

Cheng Xu, Guanjun Gao, Sai Chen, Jie Zhang, Ming Luo, Rong Hu, and Qi Yang
Opt. Express 24(23) 26678-26686 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved