OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 20 — Oct. 15, 2013
  • pp: 3251–3257

The Effect of the Cladding Refractive Index on an Optical Fiber Evanescent-Wave Sensor

Elena Sinchenko, W. E. Keith Gibbs, Alexander P. Mazzolini, and Paul R. Stoddart

Journal of Lightwave Technology, Vol. 31, Issue 20, pp. 3251-3257 (2013)

View Full Text Article

Acrobat PDF (794 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Evanescent field interactions can be used to provide a variety of sensing modalities in optical fibers with a modified cladding. However, the evanescent field interaction with the surrounding environment is strongly dependent on the refractive index of the modified cladding region. This can lead to difficulties due to dispersion in the refractive index, particularly in fluorescence based sensors where the excitation and emission wavelengths are separated. Here, a broadband supercontinuum light source has been used to characterize the refractive index dependence of the sensor response over a wide wavelength range. The critical effect of the cladding refractive index on the performance of an optical fiber evanescent wave sensor is demonstrated for both amplitude and wavelength modulated situations. In principle, this approach can be used to predict the performance of the sensor over the full wavelength range of the broadband source. The results also suggest that residues from the original cladding of the fiber cause an intrinsic loss, which reduces the sensitivity at low levels of extrinsic absorption. The integrity of the interface between the core and the modified cladding is therefore an important parameter to be addressed in practical sensing applications.

© 2013 IEEE

Elena Sinchenko, W. E. Keith Gibbs, Alexander P. Mazzolini, and Paul R. Stoddart, "The Effect of the Cladding Refractive Index on an Optical Fiber Evanescent-Wave Sensor," J. Lightwave Technol. 31, 3251-3257 (2013)

Sort:  Year  |  Journal  |  Reset


  1. R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development ," Fresenius J. Anal. Chem. 362, 349 -373 (1998).
  2. G. McAdam, P. J. Newman, I. McKenzie, C. Davis, B. R. W. Hinton, "Fiber optic sensors for detection of corrosion within Aircraft," Struct. Health Monit. 4, 47-56 (2005 ).
  3. E. A. Mendoza, A. N. Khalil, Z. Sun, D. Robinson, S. J. Syracuse, C. O. Egalon, M. F. Gunther, R. A. Lieberman, "Embeddable distributed moisture and pH sensors for nondestructive inspection of aircraft lap joints ," Proc. SPIE 2455, 102-112 (1995).
  4. E. A. Mendoza, D. Robinson, R. A. Lieberman, "Miniaturized integrated optic chemical sensors for environmental monitoring and remediation," Proc. SPIE 2836, 76-87 (1996).
  5. S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, R. A. Lieberman, "A distributed fiber optic chemical sensor for hydrogen cyanide detection," Proc. SPIE 5993, 599302 (2005).
  6. S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, R. A. Lieberman, "A fiber optic sensor for nerve agent," Proc. SPIE 6378, 63780U-63783U (2006).
  7. H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, R. A. Lieberman, " Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection," Proc. SPIE 6004, 600406 (2005).
  8. M. Ghandehari, C. S. Vimer, "In situ monitoring of pH level with fiber optic evanescent field spectroscopy," NDT and E Int. 37, 611-616 (2004).
  9. W. Grahn, P. Makedonski, J. Wichern, W. Kowalsky, S. Wiese, " Fiber optic sensors for an in-situ monitoring of moisture and pH value in reinforced concrete," Proc. SPIE (2002) pp. 395 -404.
  10. S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, R. A. Lieberman, "Fiber optic sensor coatings with enhanced sensitivity and longevity," Proc. SPIE 6377, 63770C (2006).
  11. P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72–74, 1017-1019 (1997).
  12. C. A. Browne, D. H. Tarrant, M. S. Olteanu, J. W. Mullens, E. L. Chronister, "Intrinsic sol–gel clad fiber-optic sensors with time-resolved detection," Anal. Chem. 68, 2289-2295 (1996).
  13. M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, "Fluorescent fiber-optic calcium sensor for physiological measurements ," Anal. Chem. 68, 1414-1418 (1996).
  14. B. D. MacCraith, "Enhanced evanescent wave sensors based on sol–gel-derived porous glass coating," Sens. Actuators B Chem. 11, 29-34 (1993).
  15. L. L. Blyler, Jr.R. A. Lieberman, L. G. Cohen, J. A. Ferrara, J. B. Macchesney, "Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings ," Polymer. Eng. Sci. 29, 1215-1218 (1989).
  16. M. Janotta, A. Katzir, B. Mizaikoff, "Sol–gel-coated mid-infrared fiber-optic sensors," Appl. Spectros. 57, 823-828 (2003).
  17. L. Bansal, M. El-Sherif, "Intrinsic optical-fiber sensor for nerve agent sensing," IEEE Sens. J. 5, 648-655 (2005).
  18. R. A. Potyrailo, G. M. Hieftje, "Optical time-of-flight chemical detection: Spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers," Anal. Chem. 70 , 1453-1461 (1998).
  19. E. Sinchenko, W. E. K. Gibbs, C. E. Davis, P. R. Stoddart, "Characterization of time-resolved fluorescence response measurements for distributed optical-fiber sensing," Appl. Opt. 49, 6385-6390 (2010).
  20. P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, D. J. Booth, "Fibre optic distributed temperature sensor with an integrated background correction function," Meas. Sci. Technol. 16, 1299- 1304 (2005).
  21. J. Yuan, M. A. El-Sherif, "Fiber-optic chemical sensor using polyaniline as modified cladding material," IEEE Sens. J. 3, 5-12 (2003).
  22. S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, T. M. Monro, "Distributed fluorescence sensing using exposed core microstructured optical fiber," IEEE Photon. Technol. Lett. 22 , 1385-1387 (2010).
  23. I. Z. Kozma, P. Krok, E. Riedle, "Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet ," J. Opt. Soc. Amer. B 22, 1479-1485 (2005).
  24. Kaye and Laby. (2005). Tables of physical & chemical constants (16th edition 1995). 2.5.8 refractive index of optical materials. Kaye & Laby [Online]. Available: www.kayelaby.npl.co.uk.
  25. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983, Ch. 6) pp. 126.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited