OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 20 — Oct. 15, 2013
  • pp: 3267–3276

Multilevel Transmission in Dimmable Visible Light Communication Systems

Sang Hyun Lee, Kang-Il Ahn, and Jae Kyun Kwon

Journal of Lightwave Technology, Vol. 31, Issue 20, pp. 3267-3276 (2013)

View Full Text Article

Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper proposes a multilevel transmission scheme for dimmable visible light communication systems. To provide dimming control of the multilevel modulation, the concatenation of different pulse-amplitude-modulated symbols is used to yield the overall signal with an average amplitude that matches the dimming requirement. This scheme also aims at arbitrary dimming adaptation by adjusting the composition of concatenated differently modulated symbols. To this end, the problem is formulated into linear programming with the objective of maximizing the transmission data rate and satisfying the dimming requirements. We present an achievable data rate of this transmission scheme and demonstrate the error performance under iterative decoding.

© 2013 IEEE

Sang Hyun Lee, Kang-Il Ahn, and Jae Kyun Kwon, "Multilevel Transmission in Dimmable Visible Light Communication Systems," J. Lightwave Technol. 31, 3267-3276 (2013)

Sort:  Year  |  Journal  |  Reset


  1. E. F. Schubert, J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).
  2. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. , vol. 50, no. 1, pp. 100–107, Feb. 2004..
  3. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag., vol. 49, no. 9, pp. 56–62, Sep. 2011..
  4. IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, Sep. 2011..
  5. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1063–1065, Aug. 1, 2009..
  6. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1243–1245, Jul. 15, 2008..
  7. T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, "Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment," IEEE Trans. Wireless Commun. 8, 2892-2900 (2009).
  8. F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, H.-T. Huang, and C.-H. Ho, “1.1-Gb/s wite-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photon. Technol. Lett., vol. 24, no. 19, pp. 1730–1732, Oct. 1, 2012..
  9. K. Lee, H. Park, J. R. Barry, "Indoor channel characteristics for visible light communications," IEEE Commun. Lett. 15, 217-219 (2011).
  10. L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, E. T. Won, " High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting ," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).
  11. K. D. Dambul, D. C. O’Brien, and G. Faulkner, “Indoor optical wireless MIMO system with an imaging receiver,” IEEE Photon. Technol. Lett. , vol. 23, no. 2, pp. 97–99, Jan. 15, 2011..
  12. H. Elgala, R. Mesleh, H. Haas, "Indoor broadcasting via white LEDs and OFDM," IEEE Trans. Consum. Electron. 55, 1127-1134 (2009 ).
  13. J. Vu $\check{\rm c}$ i $\acute{\rm c}$ , C. Kottke, S. Nerreter, A. B $\ddot{\rm u}$ ttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1511–1513, Oct. 15, 2009..
  14. G. Ntogari, T. Kamalakis, J. W. Walewski, T. Sphicopoulos, "Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone," IEEE/OSA J. Opt. Commun. Netw. 3, 56- 65 (2011).
  15. W. O. Popoola, E. Poves, H. Haas, "Error performance of generalised space shift keying for indoor visible light communications," IEEE Trans. Commun. 61, 1968-1976 (2013).
  16. Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Opt. Exp., vol. 20, no. 17, pp. 18861–18868, Aug. 13, 2012..
  17. E. Cho, J.-H. Choi, C. Park, M. Kang, S. Shin, Z. Ghassemlooy, C. G. Lee, "NRZ-OOK signaling with LED dimming for visible light communication link ," Proc. 16th Eur. Conf. Netw. Opt. Commun. () pp. 32 -35.
  18. H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “PWM-based PPM format for dimming control in visible light communication system,” presented at the 8th Int. Symp. Commun. Syst., Netw. Digital Signal Process., Poznan, Poland, Jul. 2012..
  19. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightw. Technol. , vol. 26, no. 24, pp. 3883–3892, Dec. 2008..
  20. B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” presented at the 19th Annu. Wireless Opt. Commun. Conf., Shanghai, China, May 2010..
  21. S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: Modulation schemes and dimming support,” IEEE Commun. Mag. , vol. 50, no. 3, pp. 72–82, Mar. 2012..
  22. J.-H. Yoo, S.-Y. Jung, "Modeling and analysis of variable PPM for visible light communications," EURASIP J. Wireless Commun. Netw. 2013, (2013 ).
  23. M. Anand and P. Mishra, “A novel modulation scheme for visible light communication,” presented at the 2010 Annu. IEEE India Conf., Kolkata, India, Dec. 2010..
  24. K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photon. Technol. Lett., vol. 23, no. 16, pp. 1136–1138, Aug. 15, 2011..
  25. J. K. Kwon, “Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links,” IEEE Photon. Technol. Lett. , vol. 22, no. 19, pp. 1455–1457, Oct. 1, 2010..
  26. K.-I. Ahn and J. K. Kwon, “Capacity analysis of M-PAM inverse source coding in visible light communications,” J. Lightw. Technol., vol. 30, no. 10, pp. 1399–1404, May 15, 2012..
  27. A. B. Siddique, M. Tahir, "Joint brightness control and data transmission for visible light communication systems based on white LEDs," Proc. IEEE Consum. Commun. Network. Conf. ( 2011) pp. 1026-1030.
  28. J. Kim, K. Lee, H. Park, "Power efficient visible light communication systems under dimming constraint," Proc. 23rd IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (2012) pp. 1968-1973.
  29. P. Das, B.-Y. Kim, Y. Park, K.-D. Kim, "A new color space based constellation diagram and modulation scheme for color independent VLC," Adv. Electr. Comput. Eng. 12, 11-18 ( 2012).
  30. B. Bai, Q. He, Z. Xu, Y. Fan, "The color shift key modulation with non-uniform signaling for visible light communication," Proc. 1st IEEE Int. Conf. Commun. China Workshop () pp. 37 -42.
  31. K.-I. Ahn and J. K. Kwon, “Color intensity modulation for multicolored visible light communications,” IEEE Photon. Technol. Lett. , vol. 24, no. 24, pp. 2254–2257, Dec. 15, 2012..
  32. S. Kim and S.-Y. Jung, “Novel FEC coding scheme for dimmable visible light communication based on the modified Reed-Muller codes,” IEEE Photon. Technol. Lett., vol. 23, no. 20, pp. 1514–1516, Oct. 15, 2011..
  33. S. Kim and S.-Y. Jung, “Modified RM coding scheme made from the bent function for dimmable visible light communications,” IEEE Photon. Technol. Lett. , vol. 25, no. 1, pp. 11–13, Jan. 1, 2013..
  34. S. H. Lee and J. K. Kwon, “Turbo code-based error correction scheme for dimmable visible light communication systems,” IEEE Photon. Technol. Lett. , vol. 24, no. 17, pp. 1463–1465, Sep. 1, 2012..
  35. I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” in Proc. SPIE 6337, Int. Conf. Solid State Light., Sep. 2006, pp. 63371F-1–63371F-12..
  36. A. Lapidoth, S. M. Moser, M. A. Wigger, "On the capacity of free-space optical intensity channels," IEEE Trans. Inf. Theory 55, 4449-4461 (2009).
  37. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, 2004).
  38. S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, T. W. Raasch, "Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources," Optometry Vis. Sci. 68, 645-662 (1991).
  39. A. Goldsmith, Wireless Communications (Cambridge Univ. Press, 2005).
  40. S. Hranilovic, F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes ," IEEE Trans. Inf. Theory 49, 1385-1399 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited