OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 21 — Nov. 1, 2013
  • pp: 3425–3431

Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

Martin Erland Vestergaard Pedersen, Ji Cheng, Chris Xu, and Karsten Rottwitt

Journal of Lightwave Technology, Vol. 31, Issue 21, pp. 3425-3431 (2013)


View Full Text Article

Acrobat PDF (1745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard implementation for a simple single mode soliton propagation example. As opposed to the standard implementation, the new implementation is able to reproduce pulsed four wave mixing observed experimentally in a higher order mode fiber.

© 2013 IEEE

Citation
Martin Erland Vestergaard Pedersen, Ji Cheng, Chris Xu, and Karsten Rottwitt, "Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber," J. Lightwave Technol. 31, 3425-3431 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-21-3425


Sort:  Year  |  Journal  |  Reset

References

  1. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Gruner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett., vol. 101, no. 16, p. 161106, 2012..
  2. R. H. Stolen, J. E. Bjorkholm, A. Ashkin, "Phase matched three wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
  3. R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
  4. R. H. Stolen, W. N. Leibolt, "Optical fiber modes using stimulated four photon mixing," Appl. Opt. 15, 239-243 (1976).
  5. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent ${6}\times {6}$ mimo processing," J. Lightw. Technol. 30, 521 -531 (2012).
  6. J. Dudley, J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).
  7. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Exp., vol. 15, no. 24, pp. 16 110–16 123, Nov. 2007..
  8. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Amer. B 6, 1159-1166 (1989).
  9. M. E. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Higher-order-mode fiber optimized for energetic soliton propagation," Opt. Lett. 37, 3459-3461 (2012).
  10. J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Time-domain multimode dispersion measurement in a higher-order-mode fiber," Opt. Lett. 37, 347-349 (2012).
  11. M. Kolesik, E. Wright, J. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers," Appl. Phys. B: Lasers Opt. 79, 293-300 (2004 ).
  12. F. Poletti, P. Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Amer. B 25, 1645 -1654 (2008).
  13. F. Poletti, P. Horak, "Dynamics of femtosecond supercontinuum generation in multimode fibers," Opt. Exp. 17, 6134-6147 (2009).
  14. J. Hult, "A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," J. Lightw. Technol. 25, 3770-3775 (2007).
  15. A. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightw. Technol., vol. 27, no. 18, pp. 3984–3991, Sep. 15, 2009..

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited