OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 21 — Nov. 1, 2013
  • pp: 3432–3438

Enhanced Optical Forces by Hybrid Long-Range Plasmonic Waveguides

Lin Chen, Tian Zhang, and Xun Li

Journal of Lightwave Technology, Vol. 31, Issue 21, pp. 3432-3438 (2013)

View Full Text Article

Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Compared with optical resonant structures, current plasmonic waveguides have the advantage of enhancing optical forces in a broad range of wavelengths, but the enhancement can only be maintained for several dozens of microns at 1.55 μm. Here, a hybrid long-range plasmonic waveguide, consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, is proposed for optical forces. Strong optical coupling between the dielectric waveguide mode and long-range plasmonic mode leads to enhanced optical forces on the dielectric nanowire at low input optical power due to the deep subwavelength optical energy confinement. The enhancement can be maintained for distances of 1∼2 orders of magnitude larger than that of previous plasmonic waveguides. The deep subwavelength optical confinement as well as enhanced field gradient also allows eff icient trapping of single nanoscale particle, while the smaller propagation loss ensures a much larger trapping region at the same input optical power. The present results enable the potential applications of precisely controlling the positions of dielectric nanowires as well as manipulating a single nanoparticle such as a biomolecule and one quantum dot.

© 2013 IEEE

Lin Chen, Tian Zhang, and Xun Li, "Enhanced Optical Forces by Hybrid Long-Range Plasmonic Waveguides," J. Lightwave Technol. 31, 3432-3438 (2013)

Sort:  Year  |  Journal  |  Reset


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure ," Phys. Rev. Lett. 24, 156-159 (1970).
  2. S. Chu, "Laser manipulation of atoms and particles," Science 253, 861-866 (1991).
  3. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005).
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457 , 71-75 (2009).
  5. T. Kippenberg, K. Vahala, " Cavity optomechanics: Back-action at the mesoscale," Science 321 , 1172-1176 (2008).
  6. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, "Harnessing optical forces in integrated photonic circuits," Nature 456, 480 -484 (2008).
  7. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, "A picogram-and nanometre-scale photonic-crystal optomechanical cavity," Nature 459, 550-555 (2009).
  8. G. S. Wiederhecker, L. Chen, A. Gondarenko, M. Lipson, "Controlling photonic structures using optical forces," Nature 462, 633-636 (2009).
  9. M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
  10. J. Rosenberg, Q. Lin, O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nat. Photon. 3, 478-483 (2009).
  11. G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Riviere, A. Schliesser, E. Weig, J. Kotthaus, T. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," Nat. Phys. 5, 909-914 ( 2009).
  12. P. T. Rakich, M. A. Popović, M. Soljači, E. P. Ippen, "Trapping, corralling and spectral bonding of optical resonances through optically induced potentials," Nat. Photon. 1 , 658-665 (2007).
  13. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, T. Kuga, "Strong radiation force induced in two-dimensional photonic crystal slab cavities ," Phys. Rev. B 78, 165129 (2008).
  14. M. Povinelli, M. Ibanescu, S. G. Johnson, J. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
  15. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics ," Nature 424, 824- 830 (2003).
  16. L. Chen, G. Wang, " Nanofocusing of light energy by ridged metal heterostructures," Appl. Phys. B 89, 573-577 (2007 ).
  17. L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, S. Chen, "Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies ," Appl. Phys. B 104, 653-657 (2011).
  18. H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Sci. Rep. 3 , 1249 (2013).
  19. A. Grigorenko, N. Roberts, M. Dickinson, Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates ," Nat. Photon. 2, 365-370 (2008).
  20. W. Zhang, L. Huang, C. Santschi, O. J. Martin, "Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas," Nano Lett. 10, 1006 -1011 (2010).
  21. Y. Zheng, H. Liu, S. Wang, T. Li, J. Cao, L. Li, C. Zhu, Y. Wang, S. Zhu, X. Zhang, " Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab," Appl. Phys. Lett. 98, 083117 (2011).
  22. B. Liu, L. Yang, Y. Wang, "Optical trapping force combining an optical fiber probe and an AFM metallic probe," Opt. Exp. 19 , 3703-3714 (2011).
  23. R. Sainidou, F. J. García de Abajo, "Optically tunable surfaces with trapped particles in microcavities," Phys. Rev. Lett. 101, 136802 (2008).
  24. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, R. Quidant, " Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009 ).
  25. Y. Pang, R. Gordon, " Optical trapping of a single protein," Nano Lett. 12, 402-406 (2012).
  26. H. Wong, M. Righini, J. Gates, P. Smith, V. Pruneri, R. Quidant, "On-a-chip surface plasmon tweezers ," Appl. Phys. Lett. 99, 061107 (2011).
  27. L. Huang, S. J. Maerkl, O. J. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Exp. 17, 6018-6024 (2009).
  28. D. Woolf, M. Loncar, F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Opt. Exp. 17, 19996-20011 (2009).
  29. C. Huang, L. Zhu, " Enhanced optical forces in 2-D hybrid and plasmonic waveguides," Opt. Lett. 35, 1563-1565 (2010).
  30. X. Yang, Y. Liu, R. F. Oulton, X. Yin, X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett. 11, 321-328 (2011).
  31. Z. Kang, H. Zhang, H. Lu, J. Xu, H.-C. Ong, P. Shum, H.-P. Ho, "Plasmonic optical trap having very large active volume realized with nano-ring structure ," Opt. Lett. 37, 1748-1750 (2012).
  32. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon. 2, 496-500 (2008).
  33. M. Z. Alam, J. Meier, J. S. Aitchison, M. Mojahedi, "Super mode propagation in low index medium," Proc. Photon. Appl. Syst. Technol. Conf. (2007) pp. 6-11.
  34. D. X. Dai, S. L. He, " A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).
  35. X. Y. Zhang, A. Hu, J. Wen, T. Zhang, X. J. Xue, Y. Zhou, W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Exp. 18 , 18945-18959 (2010).
  36. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, T. Zhou, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Opt. Exp. 19, 22417-22422 ( 2011).
  37. V. D. Ta, R. Chen, H. D. Sun, "Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode," Opt. Exp. 19, 13598-13603 (2011).
  38. M. Z. Alam, J. S. Aitchison, M. Mojahedi, "Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer," Opt. Lett. 37, 55-57 (2012 ).
  39. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, D. S. Gao, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration ," J. Lightw. Technol. 30, 163 -168 (2012).
  40. L. Chen, T. Zhang, X. Li, W. P. Huang, "Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film," Opt. Exp. 20, 20535-20544 (2012).
  41. M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).
  42. L. Chen, X. Li, G. P. Wang, "A hybrid long-range plasmonic waveguide with sub-wavelength confinement," Opt. Commun. 291, 400-404 (2013).
  43. P. B. Johnson, R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
  44. J. Ma, M. L. Povinelli, "Applications of optomechanical effects for on-chip manipulation of light signals," Curr. Opin. Solid State Mater. Sci. 16, 82-90 (2012).
  45. J. Jackson, Classical Electrodynamics (Wiley, 1999).
  46. A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles ," Opt. Lett. 11, 288-290 (1986).
  47. H. Xu, M. Käll, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002 ).
  48. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629 -632 (2009).
  49. T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, "Crystallographic alignment of high-density gallium nitride nanowire arrays ," Nat. Mater. 3, 524-528 (2004).
  50. T. Čižmár, L. D. Romero, K. Dholakia, D. Andrews, "Multiple optical trapping and binding: New routes to self-assembly," J. Phys. B, At. Mol. Opt. Phys. 43 , pp. 102001 (25 pp.), 2010.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited