OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 22 — Nov. 15, 2013
  • pp: 3453–3459

Design and Dynamics of Multiloop Optical Frequency Locked Loop

Milad Alemohammad, Yifei Li, and Peter Herczfeld

Journal of Lightwave Technology, Vol. 31, Issue 22, pp. 3453-3459 (2013)


View Full Text Article

Acrobat PDF (784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Next generation radar system desires frequency agile low phase noise local oscillator signal. A rapidly tunable multiloop optical frequency locked loop (OFLL) can provide such functionality. The OFLL employs a pair of electro-optic tunable microchip lasers that are heterodyned to produce a frequency agile microwave modulated optical subcarrier. A feedback through a multiloop fiber optic based microwave frequency discriminator assures low phase noise operation. This paper concerns design and optimization of stable, low phase noise OFLLs. This paper features a parametric study, followed by proof-of-concept experiments. Phase noise of −120 dBc/Hz at 10 KHz offset is achieved experimentally and conditions for obtaining a phase noise in excess of −130 dBc/Hz are discussed.

© 2013 IEEE

Citation
Milad Alemohammad, Yifei Li, and Peter Herczfeld, "Design and Dynamics of Multiloop Optical Frequency Locked Loop," J. Lightwave Technol. 31, 3453-3459 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-22-3453


Sort:  Year  |  Journal  |  Reset

References

  1. X. S. Yao, L. Maleki, " Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).
  2. D. Eliyahu, D. Seidel, L. Maleki, "Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system," Proc. IEEE Int. Freq. Control Symp. (2008) pp. 811-814.
  3. X. S. Yao, L. Maleki, " Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36 , 79-84 (2000).
  4. T. Banky, B. Horvath, T. Berceli, "Calculations for the measure of the achievable phase noise reduction by the utilization of optimized multiloop opto-electronic oscillators ," Proc. Eur. Microw. Conf. (2005) pp. 4-6.
  5. T. Bánky, B. Horváth, T. Berceli, "Optimum configuration of multiloop optoelectronic oscillators," J. Opt. Soc. Amer. B 23 , 1371-1380 (2006).
  6. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Tech. 47, 1257-1264 (1999).
  7. N. Satyan, W. Liang, A. Kewitsch, G. Rakuljic, A. Yariv, " Coherent power combination of semiconductor lasers using optical phase-lock loops," IEEE J. Sel. Topics Quantum Electron. 15, 240 -247 (2009).
  8. U. Gliese, T. Nielsen, M. Bruun, E. Lintz Christensen, K. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  9. R. T. Ramos, A. J. Seeds, "Delay, linewidth and bandwidth limitations in optical phase-locked loop design," Electron. Lett. 26, 389 -391 (1990).
  10. U. Gliese, E. Christensen, K. Stubkjaer, "Laser linewidth requirements and improvements for coherent optical beam forming networks in satellites," J. Lightw. Technol. 9, 779-790 (1991).
  11. Y. Li, S. Goldwasser, P. Herczfeld, "Optically generated dynamically tunable, low noise millimeter wave signals using microchip solid state lasers," Proc. IEEE MTT-S Int. Microw. Symp. Dig. (2003) pp. 1391-1394.
  12. Y. Li, “Optically generation of rapidly tunable millimeter wave subcarriers using microchip lasers,” Ph.D. dissertation, ECE. Dept., Drexel Univ., Philadelphia, PA, USA, 2003..
  13. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, A. Le Floch, "Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightw. Technol. 26, 2764-2773 ( 2008).
  14. G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, T. Merlet, " Stabilization of new generation solid-state dual-frequency laser at 1.5 μm for optical distribution of high purity microwave signals," Proc. 2010 IEEE Top. Meeting Microw. Photon. (2010) pp. 163-166 .
  15. Y. Li, A. Vieira, S. Goldwasser, P. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for lidar-radar ," IEEE Trans. Microw. Theory Tech. 49, 2048-2054 (2001 ).
  16. M. Csörnyei, T. Berceli, PR. Herczfeld, "Noise suppression of Nd:YVO4 solid-state lasers for telecommunication applications," J. Lightw. Technol. 21, 2983-2988 (2003).
  17. L. Ponnampalam, R. J. Steed, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, A. J. Seeds, "A compact tunable coherent terahertz source based on an hybrid integrated optical phase-lock loop ," Proc. IEEE Top. Meeting Microw. Photon. (2010) pp. 151-154.
  18. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, L. A. Johansson, "An optical phase-locked loop photonic integrated circuit," J. Lightw. Technol. 28, 526-538 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited