OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 22 — Nov. 15, 2013
  • pp: 3460–3468

Optimization of Sensors Based on Multimode Interference in Single-Mode–Multimode–Single-Mode Structure

Ignacio Del Villar, Abian B. Socorro, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias

Journal of Lightwave Technology, Vol. 31, Issue 22, pp. 3460-3468 (2013)

View Full Text Article

Acrobat PDF (1294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


By coating a single-mode–multimode–single-mode (SMS) structure with a complex refractive index thin-film the central wavelength of the transmission and attenuation bands of the optical spectrum can be shifted. By adequate selection of multimode segment length and diameter, the thin-film thickness and the thin-film refractive index, the sensitivity of the device to the surrounding medium refractive index, the thickness of the thin-film or the refractive index of the thin-film can be optimized. Experimental results are corroborated numerically with the transfer matrix method.

© 2013 IEEE

Ignacio Del Villar, Abian B. Socorro, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias, "Optimization of Sensors Based on Multimode Interference in Single-Mode–Multimode–Single-Mode Structure," J. Lightwave Technol. 31, 3460-3468 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, C. M. B. Cordeiro, "Ultrahigh-sensitivity temperature fiber sensor based on multimode interference," Appl. Opt. 51, 3236-3242 (2012).
  2. L. B. Soldano, E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and applications ," J. Lightw. Technol. 13, 615 -627 (1995).
  3. L. L. Xue, L. Yang, " Sensitivity enhancement of RI sensor based on SMS fiber structure with high refractive index overlay," J. Lightw. Technol. 30, 1463-1469 (2012).
  4. W. S. Mohammed, P. W. E. Smith, "All-fiber multimode interference bandpass filter," Opt. Lett. 31, 2547-2549 (2006).
  5. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, P. LiKamWa, "Tunable multimode-interferencebandpass fiber filter," Opt. Lett. 35, 324-326 (2010).
  6. A. Mehta, W. Mohammed, E. G. Johnson, "Multimode interference-based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15 , 1129-1131 (2003).
  7. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, G. Farrell, " Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure," Meas. Sci. Technol. 22, 025203 (5 pp.) (2011).
  8. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, G. Farrell, " Single-mode–multimode–singlemode fiber structures for simultaneous measurement of strain and temperature ," Microw. Opt. Tech. Lett. 53, 2181 -2185 (2011).
  9. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, D. A. May-Arrioja, "Fiber optic pressure sensor using multimode interference ," J. Phys.: Conf. Ser. 274, 012025 (7 pp.) (2011).
  10. Q. Wu, Y. Semenova, P. Wang, G. Farrell, "High sensitivity SMS fiber structure based refractometer—Analysis and experiment," Opt. Exp. 19, 7937 -7944 (2011).
  11. I. Del Villar, C. R. Zamarreño, M. Hernáez, F. J. Arregui, I. R. Matías, "Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications," J. Lightw. Technol. 28, 111-117 (2010).
  12. N. D. Rees, S. W. James, R. P. Tatam, G. J. Ashwell, "Optical fiber long-period gratings with Langmuir—Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002).
  13. A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, F. J. Arregui, "Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber ," Sens. Actuators A 180, 25-31 (2012).
  14. J. Bravo, I. R. Matías, I. Del Villar, J. M. Corres, F. J. Arregui, "Nanofilms on hollow core fiber-based structures: An optical study," J. Lightw. Technol. 24, 2100-2107 (2006).
  15. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Exp. 14, 8224-8231 (2006).
  16. T. Wang, S. Korposh, S. James, R. Tatam, S.-W. Lee, "Optical fibre long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors ," Sens. Actuators B 185, 117 -124 (2013).
  17. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, F. J. Arregui, "Tunable humidity sensor based on ITO-coated optical fiber," Sens. Actuators B 146, 414-417 (2010).
  18. D. W. Kim, Y. Zhang, K. L. Cooper, A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 42, 324-325 (2006).
  19. A. B. Socorro, J. M. Corres, I. Del Villar, F. J. Arregui, I. R. Matias, "Fiber-optic biosensor based on lossy mode resonances," Sens. Actuators B 164, 263-269 ( 2012).
  20. A. B. Socorro, J. M. Corres, I. Del Villar, F. J. Arregui, I. R. Matias, "Mode transition in complex refractive index coated single-mode–multimode–single-mode structure," Opt. Exp. 21, 12668 -12682 (2013).
  21. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, D. A. May-Arrioja, "Fiber-optic sensor for liquid level measurement ," Opt. Lett. 36, 3425-3427 (2011).
  22. B. H. Lee, J. Nishii, " Self-interference of long-period fibre grating and its application as temperature sensor," Electron. Lett. 34, 2059-2060 (1998).
  23. G. W. Chern, L. A. Wang, "Transfer matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period fiber gratings," J. Opt. Soc. Amer. A 16, 2675-2689 (1999).
  24. P. Yeh, A. Yariv, E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).
  25. T. Erdogan, "Cladding-mode resonances in short and long period fiber gratings filters ," J. Opt. Soc. Amer. A 14, 1760 -1773 (1997).
  26. G. Decher, "Fuzzy Nanoassemblies: Toward layered polymeric multicomposites ," Science 277, 1232-1237 (1997).
  27. I. Del Villar, I. R. Matias, F. J. Arregui, R. O. Claus, "Fiber-optic hydrogen peroxide nanosensor," IEEE Sens. J 5, 365-371 (2005).
  28. M. Hernaez, I. Del Villar, C. M. Zamarreño, F. J. Arregui, I. R. Matias, "Optical fiber refractometers based on lossy mode resonances supported by TiO $_{2}$ coatings," Appl. Opt. 49, 3980-3985 ( 2010).
  29. M. Giordanoa, M. Russo, A. Cusano, G. Mensitieri, G. Guerra, " Syndiotactic polystyrene thin film as sensitive layer for an optoelectronic chemical sensing device," Sens. Actuators B 109, 177-184 (2005).
  30. I. Del Villar, I. R. Matias, F. J. Arregui, P. Lalanne, "Optimization of sensitivity in long period fiber gratings with overlay deposition," Opt. Exp. 13, 56 -69 (2005).
  31. I. Del Villar, I. R. Matias, F. J. Arregui, "Long-period fiber gratings with overlay of variable refractive index," IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited