OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 22 — Nov. 15, 2013
  • pp: 3477–3488

Transmission Performance Investigation of RF Signal in RoF-DAS Over WDM-PON With Bandpass-Sampling and Optical TDM

Kenji Miyamoto, Takayoshi Tashiro, Youichi Fukada, Jun-ichi Kani, Jun Terada, Naoto Yoshimoto, Tatsuhiko Iwakuni, Takeshi Higashino, Katsutoshi Tsukamoto, Shozo Komaki, and Katsumi Iwatsuki

Journal of Lightwave Technology, Vol. 31, Issue 22, pp. 3477-3488 (2013)


View Full Text Article

Acrobat PDF (1041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The radio over fiber (RoF)–distributed antenna system (DAS) over a wavelength division multiplexing-passive optical network (WDM-PON) with multiple input multiple output (MIMO) employing bandpass-sampling and optical time division multiplexing (TDM) techniques has been proposed to realize next generation broadband wireless access with higher throughput and its preliminary feasibility has been confirmed. To investigate the performance of bandpass-sampled and time domain multiplexed optical signals, and enhance the transmission performance in the wireless link of the RoF-DAS over WDM-PON, we perform two-tone signal transmission experiments with 2.4 GHz band radio frequency (RF) signals and analyze the RF carrier power, third-order intermodulation distortion (IMD) power and noise power. The analysis results confirmed that the nonlinearity of the proposed system is mainly caused by a lithium niobate-Mach–Zehnder modulator (LN-MZM) as with the other RoF systems and that the dominant noise components are the signal–spontaneous beat noise arising from the amplified spontaneous emission (ASE) of two erbium doped fiber amplifiers (EDFAs) and the signal–signal beat noise caused by the interference between the optical TDM pulses. The latter is the specific noise component in the proposed system. In addition, we clarify the principle of the signal–signal beat noise generation and report that the signal–spontaneous beat noise can be reduced by the gain optimization of the two EDFAs.

© 2013 IEEE

Citation
Kenji Miyamoto, Takayoshi Tashiro, Youichi Fukada, Jun-ichi Kani, Jun Terada, Naoto Yoshimoto, Tatsuhiko Iwakuni, Takeshi Higashino, Katsutoshi Tsukamoto, Shozo Komaki, and Katsumi Iwatsuki, "Transmission Performance Investigation of RF Signal in RoF-DAS Over WDM-PON With Bandpass-Sampling and Optical TDM," J. Lightwave Technol. 31, 3477-3488 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-22-3477


Sort:  Year  |  Journal  |  Reset

References

  1. D. Wake, A. Nkansah, N. J. Gomes, "Radio over fiber link design for next generation wireless systems," J. Lightw. Technol. 28, 2456-2464 (2010).
  2. A. Nirmalathas, P. A. Gamage, C. Lim, D. Novak, R. Waterhouse, "Digitized radio-over-fiber technologies for converged optical wireless access network ," J. Lightw. Technol. 28, 2366-2375 (2010).
  3. P. K. Tang, L. C. Ong, A. Alphones, B. Luo, M. Fujise, "PER and EVM measurements of a radio-over-fiber network for cellular and WLAN system applications," J. Lightw. Technol. 22, 2370-2376 (2004).
  4. X. N. Fernando, A. B. Sesay, "Adaptive asymmetric linearization of radio over fiber links for wireless access," IEEE Trans. Veh. Technol. 51, 1576-1586 (2002).
  5. S. Komaki, K. Tsukamoto, M. Okada, H. Harada, "Proposal of radio highway networks for future multimedia-personal wireless communications," Proc. IEEE Int. Conf. Pers. Wireless Commun. (1994) pp. 204-208.
  6. D. Larrabeiti, J. A. Hernandez, I. Seoane, R. Romeral, "Managing delay in the access," Proc. 17th Eur. Conf. Netw. Opt. Commun. (2012) pp. 1-8.
  7. C. Choi, L. Scalia, T. Biermann, S. Mizuta, "Coordinated multipoint multiuser-MIMO transmissions over backhaul-constrained mobile access networks," Proc. IEEE 22nd Int. Symp. Pers. Indoor Mobile Radio Commun. (2011) pp. 1336 -1340.
  8. K. M. Maamoun, H. T. Mouftah, "Survivability models for radio-over-fiber passive optical networks (RoF-PON)/PON," Proc. 7th Int. Comput. Eng. Conf. (2011) pp. 13-18.
  9. X. Sun, K. Xu, X. Shen, Y. Li, Y. Dai, J. Wu, J. Lin, "New hierarchical architecture for ubiquitous wireless sensing and access with improved coverage using CWDM-ROF links," IEEE/OSA J. Opt. Commun. Netw. 3, 790-796 (20011).
  10. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, G. Ellinas, "Key technologies of WDM-PON for future converged optical broadband access networks [invited] ," IEEE/OSA J. Opt. Commun. Netw. 1, C35-C50 (2009).
  11. K. Zhu, M. J. Crisp, S. He, R. V. Penty, I. H. White, "MIMO system capacity improvements using radio-over-fibre distributed antenna system technology," Proc. Opt. Fiber Commun. Conf. Expo., Nat. Fiber Opt. Eng. Conf. (2011) pp. 1-3.
  12. A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Diehm, V. Kotzsch, "Analysis of and compensation for non-ideal RoF links in DAS [coordinated and distributed MIMO]," IEEE Wireless Commun. 17, 52-59 (2010).
  13. T. Yamakami, T. Higashino, K. Tsukamoto, S. Komaki, "An experimental investigation of applying MIMO to RoF ubiquitous antenna system," Proc. Int. Top. Meet. Microw. Photon. Jointly Held With the 2008 Asia-Pacific Microw. Photon. Conf. (2008) pp. 201-204.
  14. S. Okamura, M. Okada, S. Komaki, "Ubiquitous antenna system for joint detection of COFDM signals," IEICE Trans. Fundamentals Electron., Commun. Comput. Sci. E85-A, 1685-1692 (2002).
  15. K. Tsukamoto, T. Nishiumi, T. Yamagami, T. Higashino, S. Komaki, R. Kubo, T. Taniguchi, J. Kani, N. Yoshimoto, H. Kimura, K. Iwatsuki, " Convergence of WDM access and ubiquitous antenna architecture for broadband wireless services," PIERS Online 6, 385-389 (2010).
  16. A. Kohlenberg, "Exact interpolation of band-limited functions," J. Appl. Phys. 24, 1432 -1436 (1953).
  17. K. Miyamoto, T. Tashiro, T. Higashino, K. Tsukamoto, S. Komaki, K. Hara, T. Taniguchi, J. Kani, N. Yoshimoto, K. Iwatsuki, "Expeimental demonstration of MIMO RF signal transmission in RoF-DAS over WDM-PON ," Proc. Int. Top. Meet. Microw. Photon. Conf., Asia-Pacific Microw. Photon. (2011) pp. 25-28.
  18. T. Tashiro, K. Miyamoto, T. Iwakuni, K. Hara, Y. Fukada, J. Kani, N. Yoshimoto, K. Iwatsuki, T. Higashino, K. Tsukamoto, S. Komaki, "40 km fiber transmission of time domain multiplexed MIMO RF signals for RoF-DAS over WDM-PON," Proc. Opt. Fiber Commun. Conf. Expo., Nat. Fiber Opt. Eng. Conf. (2012) pp. 1-3.
  19. T. Tashiro, H. Hara, J. Kani, N. Yoshimoto, K. Iwatsuki, K. Miyamoto, T. Nishiumi, T. Higashino, K. Tsukamoto, S. Komaki, "Experimental demonstration of RoF-DAS over WDM-PON with bandpass-sampling and optical TDM techniques," IEICE Electron. Exp. 9, 206-212 (2012 ).
  20. A. S. Daryoush, E. Ackerman, N. Samant, S. Wanuga, D. Kasemset, "Interfaces for high-speed fiber-optic links: Analysis and experiment," IEEE Trans. Microw. Theory Tech. 39, 2031 -2044 (1991).
  21. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071 -1082 (1989).
  22. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994) pp. 195-197.
  23. W. K. Pratt, Laser Communication Systems (Wiley, 1969) pp. 29-31.
  24. C. Desem, "Optical interference in subcarrier multiplexed systems with multiple optical carriers," IEEE J. Sel. Areas Commun. 8, 1290-1295 (1990 ).
  25. IEEE Standard for Information technology–Local and metropolitan area networks–Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput, p. 317, 2009..

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited