OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 22 — Nov. 15, 2013
  • pp: 3511–3517

A Study of Illumination and Communication using Organic Light Emitting Diodes

Hyunchae Chun, Chien-Jung Chiang, Andrew Monkman, and Dominc O’Brien

Journal of Lightwave Technology, Vol. 31, Issue 22, pp. 3511-3517 (2013)


View Full Text Article

Acrobat PDF (971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Organic light emitting diodes (OLEDs) are an attractive proposition for replacing large area Lambertian sources in lighting systems. Commercial devices can meet the luminance requirements for such systems, and small area high (∼10 MHz) bandwidth devices have been reported, but at present, not one device combines these features. However, this paper shows that 1) there is considerable potential to optimise the layout of luminaires within a room to improve illumination levels and communication and 2) that it is feasible to construct a 100 Mbps indoor broadcasting system with proper equalisation of a state of the art (10 MHz) OLED. Experiments show that 10 Mbps data transmission is possible using an experimental device.

© 2013 IEEE

Citation
Hyunchae Chun, Chien-Jung Chiang, Andrew Monkman, and Dominc O’Brien, "A Study of Illumination and Communication using Organic Light Emitting Diodes," J. Lightwave Technol. 31, 3511-3517 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-22-3511


Sort:  Year  |  Journal  |  Reset

References

  1. K. T. Kamtekar, A. P. Monkman, M. R. Bryce, "Recent advances in white organic light-emitting materials and devices (WOLEDs)," Adv. mater. 22, 572-582 (2010).
  2. H. Attar, A. P. Monkman, M. Tavasli, S. Bettington, M. R. Bryce, "White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system ," Appl. Phys. Lett. 86, 121101-121103 (2005).
  3. Visible Light Communication Consotium. (2013). [Online]. Available: http://www.vlcc.net.
  4. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, "Low-voltage organic electroluminescent devices using pin structures," Appl. Phys. Lett. 80, 139-141 (2002).
  5. S. Murano, J. Birnstock, M. Vehse, T. Canzler, and G. He, “Making highly efficient white light-emitting diodes,” accessed Apr. 24, 2008. doi:10.1117/2.1200803.1050..
  6. J. Park, "Speedup of dynamic response of organic light-emitting diodes ," J. Lightw. Technol. 28, 2873-2880 (2010).
  7. T. Fukuda, T. Okada, B. Wei, M. Ichikawa, Y. Taniguchi, "Influence of carrier-injection efficiency on modulation rate of organic light source," Opt. Lett. 32, 1905-1907 (2007).
  8. H. Le Minh, Z. Ghassemlooy, A. Burton, P. Haigh, "Equalization for organic light emitting diodes in visible light communications ," Proc. GLOBECOM Workshop (2011, pp. 828–832).
  9. P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, I. Papakonstantinou, " Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications," J. Lightw. Technol. 30, 3081-3088 (2012 ).
  10. P. A. Haigh, Z. Ghassemlooy, I. Papakonstantinou, "1.4-Mb/s White organic LED transmission system using discrete multitone modulation," Photon. Technol. Lett. 25, 615-618 (2013).
  11. H. Chun, C. Chiang, D. O’Brien, "Visible light communication using OLEDs: Illumination and channel modeling," Int. Workshop Opt. Wireless Commun. 1-3 (2012 ).
  12. T. Komine, M. Nakagawa, " Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consumer Electron. 50, no. 1 pp. 100-107, Feb. 2004.
  13. J. Grubor, S. Randel, K.-D. Langer, J. W. Walewski, "Broadband information broadcasting using LED-based interior lighting ," J. Lightw. Technol. 26, 3883-3892 (2008).
  14. J. Palais, Fiber Optic Communications (Prentice Hall , 2004).
  15. J. Barry, Wireless Infrared Communications (Springer, 1994).
  16. O. Veledar, P. O. Byrne, S. Danaher, J. I. H. Allen, L. F. Thompson, J. E. McMillan, "Simple techniques for generating nanosecond blue light pulses from light emitting diodes," Meas. Sci. Technol. 18, 131-137 (2007 ).
  17. B. Sklar, Digital Communications: Fundamentals & Applications (Pearson Education India , 2002).
  18. H. Okada, K. Masuda, Y. Takaya, K. Masaaki, "Successive interference cancellation for hierarchical parallel optical wireless communication systems," Proc. Asia-Pacific Conf. Commun. (2005 ) pp. 788-92.
  19. T. Eltaif, H. M. H. Shalaby, S. Shaari, M. M. N. Hamarsheh, "Performance analysis of successive interference cancellation scheme for optical CDMA using modified prime sequence codes," Proc. SPIE 6837 , pp. 68370Y, 2007. doi:10.1117/12.755327.
  20. T. Komine, S. Haruyama, M. Nakagawa, "Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment," IEEE Trans. Wireless Commun. 8, 2892-2900 (2009).
  21. C. J. Chiang, S. Bull, C. Winscom, A. Monkman, "A nano-indentation study of the reduced elastic modulus of Alq3 and NPB thin-film used in OLED devices," Organic Electron. 11, 450-455 (2010).
  22. S. M. King, H. A. Al-Attar, R. J. Evans, A. Congreve, A. Beeby, A. P. Monkman, "The use of substituted iridium complexes in doped polymer electrophosphorescent devices: The influence of triplet transfer and other factors on enhancing device performance," Adv. Functional Mater. 16, 1043-1050 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited