OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 22 — Nov. 15, 2013
  • pp: 3518–3524

Mode-coupling Between Surface Plasmon Modes and Bandgap-Guided Modes: A Comprehensive Study and Applications

Triranjita Srivastava, Ritwick Das, and Rajan Jha

Journal of Lightwave Technology, Vol. 31, Issue 22, pp. 3518-3524 (2013)

View Full Text Article

Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present a detailed study on waveguide design principle and propagation features of a channel Bragg-surface plasmon-coupled-waveguide (BSPCW). After proposing a convenient design route, we analyze the mechanism of coupling between bandgap-guided modes and surface plasmon polariton modes with respect to change in waveguide parameters such as type of metal, metal thickness and number of unit cells. In order to understand the physical mechanism behind the mode-coupling, we observe the redistribution of modal power of the BSPCW as wavelength changes. The interesting dispersion characteristics exhibited by the BSPCW supermodes opens a novel route to realize accurate sensors and efficient dispersion compensating modules in signal processing. Therefore, this comprehensive study could serve as a tool to optimize the performance of devices dictated by the application requirements in sensor technology and optical communications. The performance of the device in terms of sensing application is also being discussed.

© 2013 IEEE

Triranjita Srivastava, Ritwick Das, and Rajan Jha, "Mode-coupling Between Surface Plasmon Modes and Bandgap-Guided Modes: A Comprehensive Study and Applications," J. Lightwave Technol. 31, 3518-3524 (2013)

Sort:  Year  |  Journal  |  Reset


  1. J. Homola, S. S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B 54, 3-15 (1999) http://www.sciencedirect.com/science/article/pii/S0925400598003219 [Online]. Available:.
  2. A. K. Sharma, R. Jha, B. D. Gupta, "Fiber-Optic sensors based on surface plasmon resonance: A comprehensive review," IEEE Sens. J. 7 , 1118-1129 (2007) http://ieeexplore.ieee.org/Xplore/defdeny.jsp? url=http%3A%2F%2Fieeexplore .ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D% 26arnumber%3D4260987%26userType%3Dinst&denyReason= -134&arnumber=4260987&productsMat-ched= null&userType=inst [Online]. Available:.
  3. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions ," Science 311, 189-193 (2006).
  4. E. Kretschmann, H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135 (1968).
  5. J. Dostalek, J. Ctyroky, J. Himola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001) http://www.sciencedirect.com/science/article/pii/S0925400501005597 [Online]. Available: .
  6. R. Yang, R. A. Wahsheh, Z. Lu, M. A. G. Abushagur, "Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide," Opt. Lett. 35, 649-651 (2010) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35–5–649 [Online]. Available:.
  7. V. N. Konopsky, E. V. Alieva, "Long-range plasmons in lossy metal films on photonic crystal surfaces," Opt. Lett. 34, 479-481 (2009) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34–4–479 [Online]. Available:.
  8. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, M. Skorobogatiy, " Photonic band gap fiber based surface plasmon resonance sensors," Opt. Exp. 15, 11413-11426 (2007) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15–18–11413 [Online]. Available:.
  9. T. Srivastava, R. Das, R. Jha, "Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides," Appl. Phys. Lett. 97, 213104-213106 (2010) http://apl.aip.org/resource/1/applab/v97/i21/p213104_s1?view=fulltext [Online]. Available:.
  10. T. Srivastava, R. Das, R. Jha, "Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides," Sens. Actuators B 157, 246-252 (2011) http://www.sciencedirect.com/science/article/pii/S092540051100253X [Online]. Available: .
  11. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, M. Skorobogatiy, " Photonic band gap fiber based surface plasmon resonance sensors," Opt. Exp. 15, 11413-11426 (2007) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11413 [Online]. Available:.
  12. E. K. Akowuah, T. Gorman, S. Haxha, "Design and optimization of a novel surface plasmon resonance biosensor based on otto configuration," Opt. Exp. 17, 23511-23521 (2009) http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-17–26–23511&id=192717 [Online]. Available:.
  13. N. Zhang, R. Schweiss, Y. Zong, W. Knoll, "Electrochemical surface plasmon spectroscopy-recent developments," Electrochim. Acta. 52, 2869 -2875 (2007) http://www.sciencedirect.com/science/article/pii/S0013468606011522 [Online]. Available:.
  14. M. Piliarik, J. Homola, " Surface plasmonresonance(SPR) sensors: Approaching their limits," Opt. Exp. 17, 16505-16517 (2009) http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-17–19–16505&id=185678 [Online]. Available:.
  15. B. R. West, A. S. Helmy, "Properties of the quarter-wave Bragg reflection waveguide: Theory," J. Opt. Soc. Amer. B 23, 1207- 1220 (2006) http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23–6–1207 [Online]. Available:.
  16. B. R. West, A. S. Helmy, "Dispersion tailoring of quarter wave Bragg reflection waveguide," Opt. Exp. 14, 4073-4086 (2006) http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-14–9–4073&id=89613 [Online]. Available:.
  17. G. Ghosh, M. Endo, T. Iwasaki, "Temperature dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses," IEEE, J. Lightw. Technol. 12, 1338-1342 (1994) http://ieeexplore.ieee.org/xpl/ freeabs_all.jsp?arnumber=317500&abstractAccess= no&userType=inst [Online]. Available:.
  18. J. R. DeVore, "Refractive indices of rutile and sphalerite," J. Opt. Soc. Amer. 41, 416 -417 (1951) http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-41–6–416 [Online]. Available:.
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. A. Kumar, T. Srivastava, "Modeling of nanoscale rectangular hole in a real metal," Opt. Lett. 33, 333-335 (2008) http://www.opticsinfobase.org/ol/fulltext.cfm?uri=ol-33–4–333&id=154108 [Online]. Available:.
  21. A. Ghatak, K. Thyagarajan, M. R. Shenoy, "Numerical analysis of planar optical waveguides using matrix approach," IEEE: J. Lightw. Technol 5, 660-667 (1987) http://ieeexplore.ieee.org/xpl/articleDetails. jsp?tp=&arnumber=1075553& queryText%3D%5B21%5D+A.+Ghatak%2C+ K.+Thyagarajan+and+M.+R.+Shenoy%2C+% E2%80%9CNumerical+analysis+of+ planar+optical+waveguides+using+ matrix+approach [Online]. Available:.
  22. A. Yariv, "Coupled- mode theory for guided -wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973) http://authors.library.caltech.edu/9798/1/YARieeejqe73a.pdf [Online]. Available:.
  23. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echnique, "Theory of surface plasmons and surface-plasmon polaritons ," Rep. Prog. Phys. 70, 1-87 (2006) http://iopscience.iop.org/0034–4885/70/1/R01/pdf/0034- 4885_70_1_R01.pdf [Online] Available:.
  24. T. Srivastava, R. Jha, R. Das, "High performance bimetallic SPR sensor based on periodic-multilayer-waveguides," IEEE Photon. Technol. Lett. 23, 1448-1450 (2011) http://ieeexplore.ieee.org/ xpl/freeabs_all.jsp?arnumber=5960767& abstractAccess=no&userType= [Online]. Avail-able at.
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, J. Ward, C. A. Ward, "Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared," Appl. Opt. 11, 1099-1119 (1983) http://www.opticsinfobase.org/ao/abstract.cfm?id=26571 [Online]. Available: .
  26. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, C. K. Lee, "Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sens. Actuators B 113, 169-176 (2006) http://ac.els-cdn.com/S0925400505002273/1 -s2.0-S0925400505002273-main.pdf?_tid= e8719166–08a2–11e3– 892 c00000aab0f27&acdnat= 1376898332_75e29ff9a467cd4531da35d14624 71e2 [Online]. Available:.
  27. A. K. Sharma, G. J. Mohr, "Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing," New J. Phys. 10, 023039 (2008) http://iopscience.iop.org/1367–2630/10/2/023039/pdf/1367–2630_10_2_023039.pdf [Online]. Available:.
  28. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, "High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference," Opt. Lett. 36 , 2233-2235 (2011 ) http://www. opticsinfobase.org/ol/abstract.cfm?uri=ol-36–12–2233 [Online]. Available:.
  29. N. Lou, R. Jha, J. L. Dominguez, V. Finazi, J. Villatoro, G. Badenes, V. Pruneri, "Embedded optical micro-nano-fiber for stable devices," Opt. Lett. 35, 571-573 (2010) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35–4–571 [Online]. Available:.
  30. R. S. Chand, B. D. Gupta, "Surface plasmon resonance based fiber-optic sensor for detection of pesticide," Sens. Actuators B 123, 661 -666 (2007) http://www.sciencedirect. com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-34 4907913&_sort=r&_st=13&view=c&_acct=C000126936&_version= 1&_urlVersion=0&_userid=11073030&md5=4bb9fad3d7eb16db5e186 a826c00e76b&searchtype=a [Online]. Available:.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited